亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recent progress of bismuth vanadate-based photoelectrocatalytic water splitting

钒酸铋 分解水 光电阴极 材料科学 半导体 太阳能 光电化学电池 电解质 光电流 可逆氢电极 氢燃料 化学能 析氧 化学工程 光电子学 电极 化学 电化学 电子 光催化 工作电极 电气工程 催化作用 物理 生物化学 有机化学 物理化学 量子力学 工程类
作者
Kai‐Hang Ye,Tongxin Tang,Zhiting Liang,Hongbing Ji,Zhan Lin,Shihe Yang
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:67 (19): 2115-2125 被引量:3
标识
DOI:10.1360/tb-2021-0238
摘要

With increasing energy demands and ever-growing environmental concerns, solar energy and hydrogen energy have attracted worldwide attention. In particular, hydrogen energy not only has a high energy density, but also is clean, renewable, and carbon-free, when compared with primary energy sources such as coal, oil, and natural gas and secondary energy sources such as coal gas, petrol, and diesel. Photoelectrocatalytic (PEC) water splitting for hydrogen generation is a process in which a PEC cell containing photoelectrodes and electrolyte is used to split water into hydrogen and oxygen by solar energy. Therefore, PEC water splitting is one of the ideal ways to covert and store solar energy to hydrogen energy in terms of chemical bond energy. In a PEC cell, the photoanode is commonly based on n-type semiconductors and the photocathode based on p-type semiconductors. The efficiency of a PEC cell is determined by performance of these photoelectrodes interfaced with the electrolyte. However, because the oxygen evolution reaction on the photoanode is kinetically sluggish involving four electrons and the valance band maximum of photoanodes must be more positive than 1.23 V versus reversible hydrogen electrode, suitable n-type semiconductors are quite few for this purpose, limiting the common photoanodes to low efficiencies for PEC water splitting. In recent years, the bismuth vanadate photoanode has attracted great attention due to its relatively high theoretical maximum photocurrent density (~7 mA cm–2) and suitable band structure for water splitting, compared with other traditional photoanodes such as titanium dioxide, tungsten oxide, and zinc oxide. Extensive efforts have been made to unleash the full potential of the bismuth vanadate photoanode for PEC water splitting. In this mini review, we survey and analyze the design ideas and synthesis methods of high-performance bismuth vanadate photoanodes by looking back at the research progress made over the past few years on improving the light harvesting efficiency, photo-generated carrier separation efficiency and surface oxygen evolution efficiency of bismuth vanadate photoanodes. The strategies for improving the efficiencies of the bismuth vanadate photoanodes include defect state introduction, crystal facet and morphology control, and heterojunction engineering. Among the strategies, a single one, such as the defect state introduction, may enhance efficiencies of several processes (e.g., photo-generated carrier separation efficiency and surface oxygen evolution efficiency) of bismuth vanadate at the same time, but sometimes, it may enhance the efficiency of one process but degrade the efficiencies of others for the bismuth vanadate photoanode. Thus, how to comprehensively consider the cooperative mechanism to enhance the efficiencies of all the processes involved in PEC water splitting is the key to obtaining high performance bismuth vanadate photoanodes. At present, bismuth vanadate-based photoanodes have exhibited an extremely high photocurrent density and photo-generated carrier separation efficiency at higher bias voltage (over 5 mA cm–2 at 1.23 V versus reversible hydrogen electrode with over 90% photo-generated carrier separation efficiency), but the light reflection of bismuth vanadate-based photoanodes makes it unable to reach the theoretical maximum photocurrent density (~7 mA cm–2). Moreover, the efficiencies of bismuth vanadate-based photoanodes at low bias voltages are still too low. Therefore, the future development direction should be to obtain higher photocurrent density at a lower voltage, and increase the absorption efficiency and wavelength range of bismuth vanadate to reach the theoretical photocurrent density and beyond. Although bismuth vanadate photoanodes are not necessarily the final large-scale application scheme of PEC water splitting in the future, their studies will help to provide guidelines for searching new high-performance photoanode materials.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxxx完成签到,获得积分10
2秒前
2秒前
听南发布了新的文献求助10
8秒前
32秒前
38秒前
41秒前
Eileen发布了新的文献求助30
43秒前
Gigi发布了新的文献求助10
45秒前
英勇的访蕊完成签到,获得积分10
47秒前
思源应助学术混子采纳,获得10
48秒前
Gigi完成签到,获得积分10
53秒前
1分钟前
学术混子发布了新的文献求助10
1分钟前
张晓允老师完成签到,获得积分10
1分钟前
路纹婷发布了新的文献求助10
1分钟前
热情的橙汁完成签到,获得积分10
1分钟前
天天快乐应助胖子东采纳,获得10
1分钟前
916应助路纹婷采纳,获得10
1分钟前
1分钟前
1分钟前
Willow发布了新的文献求助10
1分钟前
1分钟前
1分钟前
汉堡包应助壮观小懒虫采纳,获得10
2分钟前
2分钟前
NexusExplorer应助学术混子采纳,获得10
2分钟前
2分钟前
2分钟前
Anthonywll完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
学术混子发布了新的文献求助10
2分钟前
Nini应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449971
求助须知:如何正确求助?哪些是违规求助? 4557893
关于积分的说明 14265141
捐赠科研通 4481164
什么是DOI,文献DOI怎么找? 2454700
邀请新用户注册赠送积分活动 1445487
关于科研通互助平台的介绍 1421360