Towards automated detection and quantification of concrete cracks using integrated images and lidar data from unmanned aerial vehicles

激光雷达 计算机科学 像素 计算机视觉 人工智能 遥感 扫描仪 过程(计算) 地质学 操作系统
作者
Yujie Yan,Zhong Mao,Jiahao Wu,Taşkın Padır,Jerome F. Hajjar
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:28 (8) 被引量:31
标识
DOI:10.1002/stc.2757
摘要

Recent advances in visual sensing technology and unmanned aerial vehicle (UAV) provide an effective tool to capture the as-is conditions of infrastructure and thus have gained their popularity in infrastructure inspection and documentation. To facilitate this process, several recent studies have proposed automated methods for detecting concrete cracks from UAV-based images. This study is aimed at proposing a new method for automating both the detection and quantification of concrete cracks. The proposed method advances state-of-the-art image-based concrete crack detection methods by integrating the RGB images with the lidar data collected by UAV. The key innovations focus on two aspects: (1) by recognizing objects of interest in the lidar data, regions of interest can be extracted automatically from the images; (2) by retrieving the depth information through the lidar data, the actual pixel sizes can be estimated to facilitate both the detection and quantification of concrete cracks. In order to validate the proposed method, a customized UAV platform that was equipped with a high-resolution camera and a Velodyne VLP-16 lidar scanner was developed to scan the substructure elements of an in-service bridge where multiple concrete cracks can be observed. The effectiveness of the proposed method in recognizing and quantifying concrete cracks is validated quantitively against manually annotated images and physical measurements. The results indicate that the proposed approach can recognize crack pixels with an accuracy of 85% on average as well as quantify the recognized concrete cracks with an error less than 10%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助Improve采纳,获得10
2秒前
soar完成签到,获得积分10
2秒前
猇会不会完成签到,获得积分20
2秒前
欢呼的汉堡完成签到,获得积分10
2秒前
2秒前
研友_VZG7GZ应助linjiandefeng采纳,获得10
4秒前
寻舟者完成签到,获得积分10
4秒前
5秒前
冰魂应助祭天丶易木采纳,获得20
6秒前
6秒前
赘婿应助高源采纳,获得10
6秒前
张鑫隆发布了新的文献求助10
6秒前
贰徒弟完成签到 ,获得积分10
7秒前
北夏完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
雨后怡然完成签到,获得积分10
10秒前
礼部尚书完成签到,获得积分10
10秒前
王柯完成签到,获得积分10
10秒前
11秒前
11秒前
feilong发布了新的文献求助10
12秒前
yan1994完成签到,获得积分10
12秒前
wanci应助满意白卉采纳,获得10
12秒前
Kong完成签到,获得积分10
13秒前
13秒前
14秒前
ahxb发布了新的文献求助10
14秒前
14秒前
linjiandefeng完成签到,获得积分10
14秒前
14秒前
AmberYang发布了新的文献求助10
14秒前
光亮机器猫完成签到,获得积分10
14秒前
调皮黑猫完成签到,获得积分10
15秒前
15秒前
Kong发布了新的文献求助10
15秒前
慕青应助斯文的傲珊采纳,获得10
15秒前
斐_发布了新的文献求助20
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805783
求助须知:如何正确求助?哪些是违规求助? 3350709
关于积分的说明 10350220
捐赠科研通 3066573
什么是DOI,文献DOI怎么找? 1683863
邀请新用户注册赠送积分活动 809190
科研通“疑难数据库(出版商)”最低求助积分说明 765407