Prediction of Pipe Failure by Considering Time-Dependent Factors: Dynamic Bayesian Belief Network Model

动态贝叶斯网络 贝叶斯网络 破损 环境科学 贝叶斯概率 工程类 可靠性工程 计算机科学 人工智能 万维网
作者
Gizachew Demissie,Solomon Tesfamariam,Rehan Sadiq
出处
期刊:ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering [American Society of Civil Engineers]
卷期号:3 (4) 被引量:20
标识
DOI:10.1061/ajrua6.0000920
摘要

The water supply system (WSS) is a lifeline of the modern city. Transmission and distribution pipes, spatially distributed components of the WSS, are most often vulnerable to failure (leakage, breakage, or burst). Many factors contribute to pipe failure. These factors can be categorized as pipe physical attributes, operational practices, and environmental factors (i.e., climatic factors and soil corrosivity). The impact of failure factors can be static or dynamic (time dependent) in nature. This study quantifies the impact of time-dependent factors on the annual and monthly trends of pipe failures. It considers a dynamic Bayesian network (DBN) as an alternative model for prediction of pipe failures. The DBN extends the static capability of a Bayesian belief network to model dynamic systems. The developed DBN model was trained using annual and monthly data categorized based on combined (metallic pipes) and specific pipe material. The annual model was considered to predict annual pipe failure trends, whereas the monthly model was used to evaluate seasonal variations and trends of pipe failure. Model performance evaluation results show that the proposed models are effective in predicting the trends and expected total number of annual and monthly pipe failures. The DBN model result indicates that the models trained on specific pipe material performed well compared to the model trained using combined metallic pipe data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
梦想Nature的一天完成签到,获得积分10
2秒前
2秒前
jery发布了新的文献求助10
4秒前
研友_LMBAXn发布了新的文献求助10
5秒前
yfy发布了新的文献求助10
5秒前
无辜的夏山完成签到,获得积分10
5秒前
yaoxihe发布了新的文献求助10
6秒前
6秒前
乐乐应助机智的翠曼采纳,获得10
6秒前
QQD发布了新的文献求助10
6秒前
7秒前
peng7发布了新的文献求助10
7秒前
田様应助qing采纳,获得10
8秒前
Ethan发布了新的文献求助10
8秒前
领导范儿应助鱼糕采纳,获得10
9秒前
寞失发布了新的文献求助30
10秒前
11秒前
哈哈哈完成签到 ,获得积分10
11秒前
11秒前
Lx完成签到,获得积分10
12秒前
12秒前
12秒前
Akim应助jery采纳,获得10
13秒前
15秒前
天天快乐应助QQD采纳,获得10
15秒前
哆来米发布了新的文献求助10
16秒前
16秒前
月月发布了新的文献求助10
17秒前
小飞发布了新的文献求助10
17秒前
18秒前
18秒前
1461644768发布了新的文献求助10
19秒前
LIWENJIE发布了新的文献求助10
19秒前
科研通AI6应助木wm采纳,获得10
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5059385
求助须知:如何正确求助?哪些是违规求助? 4284129
关于积分的说明 13350598
捐赠科研通 4101575
什么是DOI,文献DOI怎么找? 2245625
邀请新用户注册赠送积分活动 1251461
关于科研通互助平台的介绍 1182103