Detection, Elimination, Mitigation, and Prediction of Drug-Induced Liver Injury in Drug Discovery

药品 肝损伤 药物开发 生物信息学 肝毒性 毒性 药物发现 医学 药理学 重症监护医学 风险分析(工程) 生物信息学 生物 内科学 生物化学 基因
作者
François Pognan
出处
期刊:Methods in pharmacology and toxicology 卷期号:: 21-43 被引量:2
标识
DOI:10.1007/978-1-4939-7677-5_2
摘要

Despite being among the most efficiently detected and managed toxicity during preclinical drug development, drug-induced liver injury (DILI) remains a major hurdle and is recognized to be a major cause of drug attrition and market withdrawal. DILI impacts many different sectors of society including patients, public health systems, health insurers and the pharmaceutical industry. Animal models are very efficient at detecting direct, dose-dependent and species-independent toxicity to the liver, the so-called intrinsic DILI. Compounds inducing mild liver signals can be developed as drugs if they exhibit a positive therapeutic benefit and are deemed to be superior to the currently available standard of care/medications. These cases are well managed as opposed to the unpredictable, dose-independent, individual-specific idiosyncratic toxicities, which are typically not detected in preclinical phases of drug development. Considerable efforts are dedicated to the detection and understanding of idiosyncratic DILI, and to the prediction of intrinsic DILI. Ever more complex and biologically relevant in vitro models are emerging for compound prescreening purposes. These data are also being used to the development of in silico algorithms which, when combined with compound chemical properties, in vivo observations and human-based post-marketing data, yield analytical and potentially predictive systems. In addition, the recent emergence of viable humanized liver animal models should bring forth a new battery of assays for accurately predicting compound-induced intrinsic liver toxicity in patients, and may also pave the way toward a better understanding of idiosyncratic DILI reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
丘比特应助星宿采纳,获得10
2秒前
huahua发布了新的文献求助10
3秒前
云墨完成签到 ,获得积分10
3秒前
wzz完成签到,获得积分10
4秒前
xgg发布了新的文献求助10
4秒前
5秒前
xxxhhaoxxx发布了新的文献求助10
6秒前
yuanqi完成签到,获得积分10
6秒前
所所应助义气的羽毛采纳,获得30
6秒前
一个张张包完成签到,获得积分10
7秒前
小乐应助LYchem采纳,获得20
7秒前
dyc238100发布了新的文献求助10
7秒前
斯文败类应助林夕采纳,获得10
8秒前
huahua完成签到,获得积分10
10秒前
10秒前
长生完成签到 ,获得积分10
11秒前
12秒前
Ava应助李小雨采纳,获得30
14秒前
14秒前
迁湾完成签到,获得积分20
14秒前
量子星尘发布了新的文献求助10
14秒前
宋大雨完成签到,获得积分10
15秒前
锅里有虾发布了新的文献求助10
16秒前
eager发布了新的文献求助10
17秒前
徐一铭完成签到,获得积分10
17秒前
ghl完成签到,获得积分10
17秒前
nbbyysnbb完成签到,获得积分10
18秒前
迁湾发布了新的文献求助10
18秒前
呜呜呜发布了新的文献求助10
19秒前
19秒前
青青完成签到,获得积分10
20秒前
kx完成签到,获得积分10
20秒前
21秒前
桃子完成签到 ,获得积分10
21秒前
Halo完成签到,获得积分10
21秒前
牙结石雕刻自由女神完成签到,获得积分10
23秒前
23秒前
科研通AI6应助lgs采纳,获得10
24秒前
席以亦完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Life: The Science of Biology Digital Update 400
Why America Can't Retrench (And How it Might) 400
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4687805
求助须知:如何正确求助?哪些是违规求助? 4060834
关于积分的说明 12555327
捐赠科研通 3758147
什么是DOI,文献DOI怎么找? 2075519
邀请新用户注册赠送积分活动 1104314
科研通“疑难数据库(出版商)”最低求助积分说明 983431