重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Signal Quality Assessment and Lightweight QRS Detection for Wearable ECG SmartVest System

可穿戴计算机 计算机科学 蓝牙 QRS波群 探测器 人工智能 信号(编程语言) 质量(理念) 机器学习 实时计算 嵌入式系统 无线 电信 医学 哲学 心脏病学 程序设计语言 认识论
作者
Chengyu Liu,Xiangyu Zhang,Lina Zhao,Feifei Liu,Xingwen Chen,Yingjia Yao,Jianqing Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:6 (2): 1363-1374 被引量:183
标识
DOI:10.1109/jiot.2018.2844090
摘要

Recently, development of wearable and Internet of Things (IoT) technologies enables the real-time and continuous individual electrocardiogram (ECG) monitoring. In this paper, we develop a novel IoT-based wearable 12-lead ECG SmartVest system for early detection of cardiovascular diseases, which consists of four typical IoT components: 1) sensing layer using textile dry ECG electrode; 2) network layer utilizing Bluetooth, WiFi, etc.; 3) cloud saving and calculation platform and server; and 4) application layer for signal analysis and decision making. We focus on addressing the challenge of real-time signal quality assessment (SQA) and lightweight QRS detection for wearable ECG application. First, a combination method of multiple signal quality indices and machine learning is proposed for classifying 10-s single-channel ECG segments as acceptable and unacceptable. Then a lightweight QRS detector is developed for accurate location of QRS complexes. The results show that the proposed SQA method can efficiently deal with tradeoff between accepting good (97.9%) and rejecting poor (96.4%) quality ECGs, ensuring that only a low percentage of recorded ECGs are discarded. The proposed lightweight QRS detector achieves a ${F_{1}}$ score higher than 99.5% for processing clean ECGs. Meanwhile, it reports significantly higher ${F_{1}}$ scores than two existing QRS detectors for processing noisy ECGs. In addition, it also has a fine computation efficiency. This paper demonstrates that the developed IoT-driven ECG SmartVest system can be applied for widely monitoring the population during daily life and has a promising application future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tyz完成签到,获得积分10
刚刚
刚刚
顾矜应助water采纳,获得10
刚刚
刚刚
sonya应助123456采纳,获得10
1秒前
下次见完成签到,获得积分10
1秒前
zy发布了新的文献求助20
1秒前
马尔斯完成签到,获得积分10
2秒前
星辰大海应助会笑的蜗牛采纳,获得10
2秒前
3秒前
3秒前
小蘑菇应助cz采纳,获得10
4秒前
4秒前
4秒前
5秒前
6秒前
魏哥发布了新的文献求助30
6秒前
6秒前
只是虚瘦发布了新的文献求助10
6秒前
123noo发布了新的文献求助10
7秒前
7秒前
义气曼凝完成签到 ,获得积分20
7秒前
7秒前
jery完成签到,获得积分10
8秒前
虚拟的雪枫完成签到 ,获得积分10
9秒前
南橘完成签到,获得积分10
10秒前
10秒前
大方凡双发布了新的文献求助10
10秒前
10秒前
Hello应助MYhang采纳,获得10
10秒前
积极幻桃发布了新的文献求助10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
123456完成签到,获得积分20
11秒前
英俊的铭应助HUO采纳,获得10
11秒前
范恒发布了新的文献求助10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
12秒前
yyq0927应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654