PhRMA CPCDC Initiative on Predictive Models of Human Pharmacokinetics, Part 1: Goals, Properties of the Phrma Dataset, and Comparison with Literature Datasets

可预测性 药代动力学 计算机科学 预测建模 医学 数据挖掘 医学物理学 药理学 统计 机器学习 数学
作者
Patrick Poulin,Hannah M. Jones,Rhys D.O. Jones,James Yates,Christopher R. Gibson,Jenny Y. Chien,Barbara J. Ring,Kimberly K. Adkison,Handan He,Ragini Vuppugalla,Punit Marathe,Volker Fischer,Sandeep Dutta,Vikash K. Sinha,Thorir D. Bjornsson,Thierry Lavé,M. Sherry Ku
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier BV]
卷期号:100 (10): 4050-4073 被引量:59
标识
DOI:10.1002/jps.22554
摘要

This study is part of the Pharmaceutical Research and Manufacturers of America (PhRMA) initiative on predictive models of efficacy, safety, and compound properties. The overall goal of this part was to assess the predictability of human pharmacokinetics (PK) from preclinical data and to provide comparisons of available prediction methods from the literature, as appropriate, using a representative blinded dataset of drug candidates. The key objectives were to (i) appropriately assemble and blind a diverse dataset of in vitro, preclinical in vivo, and clinical data for multiple drug candidates, (ii) evaluate the dataset with empirical and physiological methodologies from the literature used to predict human PK properties and plasma concentration-time profiles, (iii) compare the predicted properties with the observed clinical data to assess the prediction accuracy using routine statistical techniques and to evaluate prediction method(s) based on the degree of accuracy of each prediction method, and (iv) compile and summarize results for publication. Another objective was to provide a mechanistic understanding as to why one methodology provided better predictions than another, after analyzing the poor predictions. A total of 108 clinical lead compounds were collected from 12 PhRMA member companies. This dataset contains intravenous (n = 19) and oral pharmacokinetic data (n = 107) in humans as well as the corresponding preclinical in vitro, in vivo, and physicochemical data. All data were blinded to protect the anonymity of both the data and the company submitting the data. This manuscript, which is the first of a series of manuscripts, summarizes the PhRMA initiative and the 108 compound dataset. More details on the predictability of each method are reported in companion manuscripts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
2秒前
NexusExplorer应助林建峰采纳,获得10
3秒前
3秒前
小哥发布了新的文献求助10
3秒前
3秒前
搜集达人应助细腻冰双采纳,获得10
4秒前
龙华之士发布了新的文献求助10
4秒前
明理的幻梦完成签到,获得积分20
4秒前
YCW发布了新的文献求助10
6秒前
8秒前
AJTY完成签到,获得积分10
8秒前
我是王浩腾我是健身王完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
jssssssss驳回了852应助
16秒前
星辰大海应助carle采纳,获得10
17秒前
18秒前
林建峰发布了新的文献求助10
18秒前
111发布了新的文献求助10
19秒前
科研通AI2S应助大脚采纳,获得10
20秒前
orixero应助晴悦采纳,获得10
21秒前
昭昭找不到完成签到,获得积分10
21秒前
风生完成签到,获得积分10
21秒前
sanmy92发布了新的文献求助10
24秒前
25秒前
26秒前
领导范儿应助科研圣体采纳,获得10
26秒前
26秒前
Vesper完成签到 ,获得积分10
27秒前
27秒前
捱小秋完成签到,获得积分10
27秒前
大脚完成签到,获得积分10
28秒前
充电宝应助今天不看文献采纳,获得30
28秒前
打打应助潘多拉采纳,获得10
29秒前
鸣笛应助妮妮采纳,获得30
29秒前
佳语妍说完成签到,获得积分10
30秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896887
求助须知:如何正确求助?哪些是违规求助? 3440758
关于积分的说明 10818488
捐赠科研通 3165685
什么是DOI,文献DOI怎么找? 1748890
邀请新用户注册赠送积分活动 845052
科研通“疑难数据库(出版商)”最低求助积分说明 788423