Depression trajectories and obesity among the elderly in Taiwan

萧条(经济学) 肥胖 医学 老年学 心理学 精神科 环境卫生 内科学 宏观经济学 经济
作者
Shu‐Yu Kuo,Keh‐Ming Lin,Chuan‐Yu Chen,Y.-L. Chuang,Wei J. Chen
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:41 (8): 1665-1676 被引量:68
标识
DOI:10.1017/s0033291710002473
摘要

The present study aimed to (a) characterize 10-year trajectory patterns of depressive symptoms and (b) investigate the association between depressive trajectory and subsequent obesity, metabolic function and cortisol level.In a prospective study of Taiwanese adults aged ≥60 years (n=3922) between 1989 and 1999, depression was assessed using a 10-item short-form of the Center for Epidemiologic Studies Depression Scale and information on body mass index (BMI) was collected by self-report. A subsample (n=445) of the original cohort in 1989 was drawn to assess metabolic variables and cortisol levels in a 2000 follow-up. After trajectory analyses were performed, multinomial logistic regression analyses were used to estimate the association estimates.We identified four distinctive trajectories of depressive symptoms: class 1 (persistent low, 41.8%); class 2 (persistent mild, 46.8%); class 3 (late peak, 4.2%); and class 4 (high-chronic, 7.2%). The results from both complete cases and multiple imputation analyses indicated that the odds of obesity were lower in the class 2, 3 or 4 elderly, as compared with those in class 1, while the odds of underweight were higher. The classes of older adults with more and persistent depressive symptoms showed a trend toward having both a lower BMI (p=0.01) and a higher cortisol level (p=0.04) compared with those with low depressive symptoms.Incremental increases in depressive symptoms over time were associated with reduced risk of obesity and higher cortisol levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静乐天完成签到 ,获得积分10
刚刚
刚刚
尹佳慧发布了新的文献求助20
1秒前
顺利毕业mpa完成签到,获得积分10
1秒前
小心薛了你完成签到,获得积分10
2秒前
2秒前
华仔应助文献多多看采纳,获得10
2秒前
festum完成签到,获得积分10
3秒前
ddd完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
科研通AI5应助woxiangbiye采纳,获得10
4秒前
4秒前
三三发布了新的文献求助10
4秒前
5秒前
科研通AI5应助是哇哦采纳,获得10
6秒前
6秒前
小马甲应助可乐采纳,获得10
6秒前
冷静烤鸡发布了新的文献求助10
6秒前
充电宝应助调皮乐荷采纳,获得10
7秒前
长生完成签到 ,获得积分10
7秒前
8秒前
兴奋的冰棍完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
中中中发布了新的文献求助10
10秒前
Nancy发布了新的文献求助10
10秒前
11秒前
crane完成签到,获得积分10
11秒前
永远55度发布了新的文献求助10
11秒前
11秒前
俞孤风发布了新的文献求助10
12秒前
13秒前
niuma发布了新的文献求助10
14秒前
许可发布了新的文献求助10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842477
求助须知:如何正确求助?哪些是违规求助? 3384535
关于积分的说明 10535634
捐赠科研通 3105077
什么是DOI,文献DOI怎么找? 1709969
邀请新用户注册赠送积分活动 823458
科研通“疑难数据库(出版商)”最低求助积分说明 774086