互补决定区
计算机科学
大分子对接
计算生物学
抗体
对接(动物)
抗原
互补性(分子生物学)
多种型号
蛋白质结构
人工智能
生物
免疫球蛋白轻链
遗传学
生物化学
医学
护理部
作者
Brian D. Weitzner,Jeliazko R. Jeliazkov,Sergey Lyskov,Nicholas Marze,Daisuke Kuroda,Rahel Frick,Jared Adolf‐Bryfogle,Naireeta Biswas,Roland L. Dunbrack,Jeffrey J. Gray
出处
期刊:Nature Protocols
[Springer Nature]
日期:2017-01-26
卷期号:12 (2): 401-416
被引量:267
标识
DOI:10.1038/nprot.2016.180
摘要
We describe Rosetta-based computational protocols for predicting the 3D structure of an antibody from sequence (RosettaAntibody) and then docking the antibody to protein antigens (SnugDock). Antibody modeling leverages canonical loop conformations to graft large segments from experimentally determined structures, as well as offering (i) energetic calculations to minimize loops, (ii) docking methodology to refine the VL-VH relative orientation and (iii) de novo prediction of the elusive complementarity determining region (CDR) H3 loop. To alleviate model uncertainty, antibody-antigen docking resamples CDR loop conformations and can use multiple models to represent an ensemble of conformations for the antibody, the antigen or both. These protocols can be run fully automated via the ROSIE web server (http://rosie.rosettacommons.org/) or manually on a computer with user control of individual steps. For best results, the protocol requires roughly 1,000 CPU-hours for antibody modeling and 250 CPU-hours for antibody-antigen docking. Tasks can be completed in under a day by using public supercomputers.
科研通智能强力驱动
Strongly Powered by AbleSci AI