休克(循环)
计量经济学
膨胀(宇宙学)
差异(会计)
鉴定(生物学)
向量自回归
推论
结构向量自回归
工具变量
经济
区间(图论)
预测误差的方差分解
自回归模型
变量(数学)
数学
计算机科学
货币政策
宏观经济学
物理
数学分析
人工智能
内科学
会计
组合数学
生物
医学
植物
理论物理学
作者
Mikkel Plagborg‐Møller,Christian Wolf
摘要
Macroeconomists increasingly use external sources of exogenous variation for causal inference. However, unless such external instruments (proxies) capture the underlying shock without measurement error, existing methods are silent on the importance of that shock for macroeconomic fluctuations. We show that, in a general moving-average model with external instruments, variance decompositions for the instrumented shock are interval-identified, with informative bounds. Various additional restrictions guarantee point identification of both variance and historical decompositions. Unlike structural vector autoregression analysis, our methods do not require invertibility. Applied to US data, they give a tight upper bound on the importance of monetary shocks for inflation dynamics.
科研通智能强力驱动
Strongly Powered by AbleSci AI