Uniting tensile ductility with ultrahigh strength via composition undulation

材料科学 极限抗拉强度 延展性(地球科学) 流动应力 纳米晶材料 位错 层错能 晶界 应变硬化指数 复合材料 变形机理 应变率 冶金 蠕动 微观结构 纳米技术
作者
Heng Li,Hongxiang Zong,Suzhi Li,Shenbao Jin,Yan Chen,Matthew J. Cabral,Bing Chen,Qianwei Huang,Yan Chen,Yang Ren,Kaiyuan Yu,Shuang Han,Xiangdong Ding,Gang Sha,Jianshe Lian,Xiaozhou Liao,Evan Ma,Jun Sun
出处
期刊:Nature [Springer Nature]
卷期号:604 (7905): 273-279 被引量:81
标识
DOI:10.1038/s41586-022-04459-w
摘要

Metals with nanocrystalline grains have ultrahigh strengths approaching two gigapascals. However, such extreme grain-boundary strengthening results in the loss of almost all tensile ductility, even when the metal has a face-centred-cubic structure-the most ductile of all crystal structures1-3. Here we demonstrate that nanocrystalline nickel-cobalt solid solutions, although still a face-centred-cubic single phase, show tensile strengths of about 2.3 gigapascals with a respectable ductility of about 16 per cent elongation to failure. This unusual combination of tensile strength and ductility is achieved by compositional undulation in a highly concentrated solid solution. The undulation renders the stacking fault energy and the lattice strains spatially varying over length scales in the range of one to ten nanometres, such that the motion of dislocations is thus significantly affected. The motion of dislocations becomes sluggish, promoting their interaction, interlocking and accumulation, despite the severely limited space inside the nanocrystalline grains. As a result, the flow stress is increased, and the dislocation storage is promoted at the same time, which increases the strain hardening and hence the ductility. Meanwhile, the segment detrapping along the dislocation line entails a small activation volume and hence an increased strain-rate sensitivity, which also stabilizes the tensile flow. As such, an undulating landscape resisting dislocation propagation provides a strengthening mechanism that preserves tensile ductility at high flow stresses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助哈哈哈哈哈采纳,获得10
刚刚
2秒前
2秒前
3秒前
yaosan完成签到,获得积分10
4秒前
的谷秋发布了新的文献求助30
6秒前
CX330发布了新的文献求助10
6秒前
紫菱发布了新的文献求助10
6秒前
6秒前
呱呱完成签到 ,获得积分10
8秒前
8秒前
9秒前
今后应助小李采纳,获得10
10秒前
赘婿应助蓝蓝娜娜采纳,获得10
11秒前
Aloha发布了新的文献求助10
11秒前
klchen发布了新的文献求助10
12秒前
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
sars518应助科研通管家采纳,获得20
12秒前
ding应助科研通管家采纳,获得10
12秒前
SOLOMON应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
隐形曼青应助竹林居士采纳,获得10
13秒前
飞天沙漠发布了新的文献求助10
13秒前
Ran-HT完成签到,获得积分10
14秒前
roy完成签到,获得积分10
16秒前
CX330完成签到,获得积分10
17秒前
zhaoyuepu完成签到,获得积分10
19秒前
19秒前
20秒前
23秒前
rooner发布了新的文献求助10
24秒前
蓝蓝娜娜发布了新的文献求助10
25秒前
26秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2422983
求助须知:如何正确求助?哪些是违规求助? 2111892
关于积分的说明 5347271
捐赠科研通 1839354
什么是DOI,文献DOI怎么找? 915625
版权声明 561230
科研通“疑难数据库(出版商)”最低求助积分说明 489747