Physical mechanism interpretation of polycrystalline metals’ yield strength via a data-driven method: A novel Hall–Petch relationship

材料科学 微晶 晶界 晶界强化 凝聚态物理 霍尔效应 粒度 电阻率和电导率 冶金 微观结构 物理 量子力学
作者
Lei Jiang,Huadong Fu,Hongtao Zhang,Jianxin Xie
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:231: 117868-117868 被引量:64
标识
DOI:10.1016/j.actamat.2022.117868
摘要

The Hall–Petch relationship σy=σ0+kyd−0.5 is widely used to describe the relationship between yield strength and grain size of polycrystalline metals, and the material constants σ0 and ky fitted by experimental data are interpreted as lattice friction resistance and coefficient of grain boundary resistance, respectively. The frequent deviations from the Hall–Petch relationship between σy and d in coarser or finer grains, as well as the physical essence of σ0 and ky, have always been the focus of material scientists. In this study, intrinsic factors of the fitted constants σ0 and ky in the traditional Hall–Petch relationship are mined via a data-driven machine learning method, which reveals that the key physical quantities affecting σ0 are valence electron distance (S), cohesive energy (W), and coefficient of linear thermal expansion (lt); meanwhile, the key physical quantities affecting ky are grain boundary interface energy (γ), Young's modulus (E) and coefficient of linear thermal expansion (lt). Then, a novel Hall–Petch model σy=79W/(S3lt)+1.2γE/ltd−0.5 with satisfying prediction accuracy is constructed by symbolic regression methods. There is no experimental fitting constant term in the novel model, which can directly predict the yield strength of polycrystalline metals by key physical quantities. The novel Hall–Petch model has an excellent generalization ability and can be extended to the correlation calculation between the composition, grain structure and mechanical properties of single-phase alloys, which provides a theoretical method for the trans-scale calculation of metallic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今夜有雨完成签到 ,获得积分10
1秒前
1秒前
郗晶完成签到,获得积分20
1秒前
祝祝完成签到 ,获得积分10
2秒前
jia发布了新的文献求助10
2秒前
3秒前
研友_8RlG1n发布了新的文献求助200
3秒前
温纲发布了新的文献求助10
5秒前
5秒前
研友_LmeK4L发布了新的文献求助10
5秒前
zhuzhu完成签到,获得积分10
7秒前
FashionBoy应助yjf采纳,获得10
7秒前
田様应助飞飞飞采纳,获得10
7秒前
韩梦完成签到,获得积分10
7秒前
落寞元芹发布了新的文献求助10
8秒前
研友_ZAxKMn发布了新的文献求助10
9秒前
9秒前
10秒前
nuoyefenfei完成签到,获得积分10
11秒前
乐乐应助丘山采纳,获得10
11秒前
jia完成签到,获得积分10
11秒前
Ava应助Vicky采纳,获得10
14秒前
14秒前
15秒前
15秒前
18秒前
Jerry完成签到,获得积分10
19秒前
爱听歌的依秋完成签到,获得积分10
19秒前
dffad完成签到,获得积分10
20秒前
superxiao应助科研通管家采纳,获得20
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
Holland应助科研通管家采纳,获得30
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
yjf发布了新的文献求助10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
21秒前
Orange应助科研通管家采纳,获得10
21秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846375
求助须知:如何正确求助?哪些是违规求助? 3388895
关于积分的说明 10554788
捐赠科研通 3109312
什么是DOI,文献DOI怎么找? 1713614
邀请新用户注册赠送积分活动 824819
科研通“疑难数据库(出版商)”最低求助积分说明 775068