scESI: evolutionary sparse imputation for single-cell transcriptomes from nearest neighbor cells

计算机科学 插补(统计学) 水准点(测量) 分类 计算生物学 人工智能 机器学习 数据挖掘 生物 算法 缺少数据 大地测量学 地理
作者
Qiaoming Liu,Ximei Luo,Jie Li,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:9
标识
DOI:10.1093/bib/bbac144
摘要

The ubiquitous dropout problem in single-cell RNA sequencing technology causes a large amount of data noise in the gene expression profile. For this reason, we propose an evolutionary sparse imputation (ESI) algorithm for single-cell transcriptomes, which constructs a sparse representation model based on gene regulation relationships between cells. To solve this model, we design an optimization framework based on nondominated sorting genetics. This framework takes into account the topological relationship between cells and the variety of gene expression to iteratively search the global optimal solution, thereby learning the Pareto optimal cell-cell affinity matrix. Finally, we use the learned sparse relationship model between cells to improve data quality and reduce data noise. In simulated datasets, scESI performed significantly better than benchmark methods with various metrics. By applying scESI to real scRNA-seq datasets, we discovered scESI can not only further classify the cell types and separate cells in visualization successfully but also improve the performance in reconstructing trajectories differentiation and identifying differentially expressed genes. In addition, scESI successfully recovered the expression trends of marker genes in stem cell differentiation and can discover new cell types and putative pathways regulating biological processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果汁橡皮糖完成签到,获得积分10
刚刚
子桑发布了新的文献求助10
2秒前
kun发布了新的文献求助10
6秒前
慈祥的越泽完成签到,获得积分10
10秒前
loii应助巫马尔槐采纳,获得20
12秒前
13秒前
ding应助qcc采纳,获得10
14秒前
x9816发布了新的文献求助10
16秒前
葱葱发布了新的文献求助10
16秒前
丘比特应助韦老虎采纳,获得50
19秒前
19秒前
甜美夏岚完成签到 ,获得积分20
22秒前
22秒前
wangbq完成签到 ,获得积分10
23秒前
24秒前
侯元正发布了新的文献求助10
25秒前
26秒前
段凯完成签到 ,获得积分10
26秒前
27秒前
29秒前
31秒前
无期完成签到,获得积分10
32秒前
32秒前
33秒前
大模型应助x9816采纳,获得10
33秒前
34秒前
34秒前
orixero应助苹果酸奶采纳,获得10
35秒前
36秒前
无期发布了新的文献求助10
37秒前
39秒前
所所应助AAA工位主理人采纳,获得10
39秒前
An发布了新的文献求助10
39秒前
艳子发布了新的文献求助10
39秒前
40秒前
激昂的飞松完成签到,获得积分10
41秒前
42秒前
43秒前
丘比特应助风中的三德采纳,获得20
44秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Competency Based Human Resource Management 500
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5864363
求助须知:如何正确求助?哪些是违规求助? 6401168
关于积分的说明 15651047
捐赠科研通 4978709
什么是DOI,文献DOI怎么找? 2685489
邀请新用户注册赠送积分活动 1628552
关于科研通互助平台的介绍 1586297