Dual-Task ConvLSTM-UNet for Instance Segmentation of Weakly Annotated Microscopy Videos

计算机科学 人工智能 分割 模式识别(心理学) 图像分割 计算机视觉 对偶(语法数字) 任务(项目管理) 文学类 经济 艺术 管理
作者
Assaf Arbelle,Shaked Bar Cohen,Tammy Riklin Raviv
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 1948-1960 被引量:23
标识
DOI:10.1109/tmi.2022.3152927
摘要

Convolutional Neural Networks (CNNs) are considered state of the art segmentation methods for biomedical images in general and microscopy sequences of living cells, in particular. The success of the CNNs is attributed to their ability to capture the structural properties of the data, which enables accommodating complex spatial structures of the cells, low contrast, and unclear boundaries. However, in their standard form CNNs do not exploit the temporal information available in time-lapse sequences, which can be crucial to separating touching and partially overlapping cell instances. In this work, we exploit cell dynamics using a novel CNN architecture which allows multi-scale spatio-temporal feature extraction. Specifically, a novel recurrent neural network (RNN) architecture is proposed based on the integration of a Convolutional Long Short Term Memory (ConvLSTM) network with the U-Net. The proposed ConvLSTM-UNet network is constructed as a dual-task network to enable training with weakly annotated data, in the form of approximate cell centers, termed markers, when the complete cells' outlines are not available. We further use the fast marching method to facilitate the partitioning of clustered cells into individual connected components. Finally, we suggest an adaptation of the method for 3D microscopy sequences without drastically increasing the computational load. The method was evaluated on the Cell Segmentation Benchmark and was ranked among the top three methods on six submitted datasets. Exploiting the proposed built-in marker estimator we also present state-of-the-art cell detection results for an additional, publicly available, weekly annotated dataset. The source code is available at https://gitlab.com/shaked0/lstmUnet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周小鱼发布了新的文献求助10
1秒前
2秒前
独特不斜完成签到,获得积分10
4秒前
Jalin完成签到 ,获得积分10
4秒前
故酒应助甜甜笑采纳,获得10
4秒前
Lucky发布了新的文献求助10
5秒前
心斋完成签到,获得积分10
5秒前
阿姊完成签到 ,获得积分10
7秒前
yesic完成签到,获得积分10
7秒前
uniondavid发布了新的文献求助10
8秒前
CodeCraft应助zanzan采纳,获得10
8秒前
我是老大应助静水流深采纳,获得10
8秒前
李家人完成签到 ,获得积分10
8秒前
9秒前
阿崔发布了新的文献求助10
9秒前
11秒前
一一一完成签到 ,获得积分10
12秒前
12秒前
江伊发布了新的文献求助10
12秒前
小石头完成签到 ,获得积分10
13秒前
13秒前
小二郎应助马上毕业采纳,获得10
13秒前
屯屯鱼完成签到,获得积分10
14秒前
螃蟹医生发布了新的文献求助10
16秒前
16秒前
gugugaga完成签到,获得积分10
17秒前
17秒前
19秒前
penghuiye完成签到,获得积分10
20秒前
无花果应助云中渊采纳,获得10
20秒前
脑洞疼应助猪猪hero采纳,获得10
20秒前
20秒前
小十一完成签到 ,获得积分10
21秒前
23秒前
科研通AI5应助zy3637采纳,获得10
23秒前
24秒前
英勇的采白完成签到,获得积分10
25秒前
Yaaaa完成签到,获得积分10
26秒前
26秒前
吃的饭广泛应助叮叮叮采纳,获得20
27秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820741
求助须知:如何正确求助?哪些是违规求助? 3363591
关于积分的说明 10424100
捐赠科研通 3082016
什么是DOI,文献DOI怎么找? 1695425
邀请新用户注册赠送积分活动 815102
科研通“疑难数据库(出版商)”最低求助积分说明 768874