Local perspective based synthesis for vehicle re-identification: A transformation state adversarial method

计算机科学 转化(遗传学) 透视图(图形) 卷积神经网络 人工智能 发电机(电路理论) 对抗制 鉴定(生物学) 集合(抽象数据类型) 图像(数学) 国家(计算机科学) 噪音(视频) 机器学习 模式识别(心理学) 计算机视觉 数据挖掘 算法 量子力学 生物化学 基因 植物 生物 化学 功率(物理) 程序设计语言 物理
作者
Yanbing Chen,Wei Ke,Hong Lin,Chan–Tong Lam,Kai Lv,Hao Sheng,Zhang Xiong
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier]
卷期号:83: 103432-103432 被引量:8
标识
DOI:10.1016/j.jvcir.2021.103432
摘要

Vehicle re-identification (V-ReID) aims at discovering an image of a specific vehicle from a set of images typically captured by different cameras. Vehicles are one of the most important objects in cross-camera target recognition systems, and recognizing them is one of the most difficult tasks due to the subtle differences in the visible characteristics of vehicle rigid objects. Compared to various methods that can improve re-identification accuracy, data augmentation is a more straightforward and effective technique. In this paper, we propose a novel data synthesis method for V-ReID based on local-region perspective transformation, transformation state adversarial learning and a candidate pool. Specifically, we first propose a parameter generator network, which is a lightweight convolutional neural network, to generate the transformation states. Secondly, an adversarial module is designed in our work, it ensures that noise information is added as much as possible while keeping the labeling and structure of the dataset intact. With this adversarial module, we are able to promote the performance of the network and generate more proper and harder training samples. Furthermore, we use a candidate pool to store harder samples for further selection to improve the performance of the model. Our system pays more balanced attention to the features of vehicles. Extensive experiments show that our method significantly boosts the performance of V-ReID on the VeRi-776, VehicleID and VERI-Wild datasets. • A data augmentation method is designed that integrates a deep learning framework. • Local-region perspective transformation is optimized with an adversarial model. • More balanced attention is paid to the overall features of vehicles. • Data augmentation and the recognition model are jointly optimized. • Amplified samples are more efficient due to the automatic learning process. • A candidate pool stores the augmented images through the dynamic learning process. • Datasets are augmented by lifting the difficulty rather than the quantity. • The structure of the original dataset is reserved including the size and labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张萌洁完成签到,获得积分10
1秒前
乐观小蕊发布了新的文献求助10
2秒前
李健的小迷弟应助111采纳,获得10
2秒前
2秒前
希望天下0贩的0应助小王采纳,获得10
2秒前
NexusExplorer应助忧郁的涛采纳,获得10
3秒前
浮游应助CC采纳,获得10
3秒前
耍酷的剑身完成签到 ,获得积分10
3秒前
Red-Rain发布了新的文献求助10
4秒前
4秒前
脑洞疼应助结实青文采纳,获得10
5秒前
ny发布了新的文献求助10
5秒前
千尺焰发布了新的文献求助10
5秒前
vlcx完成签到,获得积分10
5秒前
minsu发布了新的文献求助10
5秒前
张萌洁发布了新的文献求助30
5秒前
领导范儿应助dachang采纳,获得10
6秒前
Jian发布了新的文献求助10
6秒前
6秒前
7秒前
wuxiao发布了新的文献求助10
8秒前
8秒前
月亮完成签到,获得积分10
9秒前
左云山完成签到,获得积分10
9秒前
9秒前
maliang666完成签到,获得积分10
10秒前
幽默人生完成签到 ,获得积分10
10秒前
10秒前
成就寄柔发布了新的文献求助10
10秒前
科研通AI6应助111采纳,获得10
11秒前
11秒前
白鹤卧雪完成签到 ,获得积分10
11秒前
warithy应助minsu采纳,获得10
11秒前
ChenYX发布了新的文献求助20
12秒前
上官若男应助fengzi151采纳,获得10
12秒前
哈哈哈哈哈完成签到 ,获得积分10
12秒前
12秒前
洁洁3323发布了新的文献求助10
12秒前
小马甲应助muzi采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552650
求助须知:如何正确求助?哪些是违规求助? 4637344
关于积分的说明 14648855
捐赠科研通 4579152
什么是DOI,文献DOI怎么找? 2511423
邀请新用户注册赠送积分活动 1486524
关于科研通互助平台的介绍 1457559