Predicting heavy metal contents by applying machine learning approaches and environmental covariates in west of Iran

专题地图 随机森林 土壤科学 环境科学 重金属 数字高程模型 采样(信号处理) 协变量 专题制图器 数字土壤制图 仰角(弹道) 土壤图 数据挖掘 遥感 地质学 计算机科学 数学 机器学习 地图学 土壤水分 地理 环境化学 卫星图像 化学 滤波器(信号处理) 几何学 计算机视觉
作者
Kamran Azizi,Shamsollah Ayoubi,Kamal Nabiollahi,Younes Garosi,René Gislum
出处
期刊:Journal of Geochemical Exploration [Elsevier BV]
卷期号:233: 106921-106921 被引量:105
标识
DOI:10.1016/j.gexplo.2021.106921
摘要

The cuurent study was performed to predict spatial distribution of some heavy metals (Ni, Fe, Cu, Mn) in western Iran, using environmental covariates and applying two machine learning methods comprised Random forest (RF), and Cubist. In this respect, a combination of different input environmental variables (remote sensing data, topographic attributes, thematic maps and soil properties) were used in modeling under four scenarios (I: remote sensing data (RS); II: RS + topographic attributes resulted from digital elevation model (DEM); III: RS + topographic attributes + thematic maps; IV: RS + topographic attributes + thematic maps +soil properties). The maps of Euclidean distance from mines and roads as well as the geology map have been used as thematic maps. A total of 346 soil samples were taken using stratified random sampling from the surface layers (0–20 cm depth) of the studied area and selected heavy metals (Ni, Fe, Cu, Mn), and soil properties were measured in the laboratory. RF and Cubist models were used to predict soil heavy metals in four scenarios. The results indicated that the best prediction accuracy was achieved for the fourth scenario (IV) when all input variables were combined to predict selected heavy metals. Moreover, two models showed different capability for various metals. According to our results, the random forest model had a high accuracy in predicting Ni (R2 = 0.67) and Cu (R2 = 0.60), In contrast, the Cubist model had a higher accuracy in predicting Mn (R2 = 0.55). For predicting Fe, both models provided a similar accuracy (R2 = 0.73). This study proved the high capability of machine learning methods to use easily available environmental data to predict studied heavy metals in the large scale that are essential for decision making in sustainable management in agricultural and environmental concerns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xy完成签到,获得积分10
刚刚
华仔应助pihriyyy采纳,获得10
1秒前
1秒前
科研通AI6应助苹果映菱采纳,获得10
1秒前
科研通AI5应助科研废物采纳,获得10
2秒前
2秒前
小杨同学发布了新的文献求助10
3秒前
3秒前
科研通AI5应助曾经凡之采纳,获得10
3秒前
ryggs完成签到,获得积分10
4秒前
冷傲老九完成签到,获得积分20
4秒前
yyds发布了新的文献求助10
4秒前
5秒前
5秒前
白智妍发布了新的文献求助20
5秒前
季思锐发布了新的文献求助10
6秒前
7秒前
kyros完成签到,获得积分10
7秒前
curiouscc发布了新的文献求助30
8秒前
ryggs发布了新的文献求助10
8秒前
浮游应助学习采纳,获得10
9秒前
成就灭龙发布了新的文献求助10
9秒前
10秒前
shixinran发布了新的文献求助10
11秒前
11秒前
斯文败类应助小齐发文章采纳,获得10
11秒前
鳕鱼完成签到 ,获得积分10
12秒前
Jasper应助小杨同学采纳,获得10
12秒前
壮的发布了新的文献求助10
14秒前
Owen应助季思锐采纳,获得10
14秒前
1111123发布了新的文献求助10
14秒前
Li发布了新的文献求助10
14秒前
14秒前
xiaoxiao发布了新的文献求助10
14秒前
万能图书馆应助mong采纳,获得10
15秒前
王海祥完成签到 ,获得积分10
15秒前
隐形曼青应助流沙采纳,获得10
16秒前
刘荣鑫完成签到,获得积分20
16秒前
充电宝应助Viviwuyx采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676