Real-time growth stage detection model for high degree of occultation using DenseNet-fused YOLOv4

果园 精准农业 目标检测 模式识别(心理学) 计算机科学 人工智能 学位(音乐) 遥感 生态学 声学 生物 农业 物理 地质学 园艺
作者
Arunabha M. Roy,Jayabrata Bhaduri
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:193: 106694-106694 被引量:132
标识
DOI:10.1016/j.compag.2022.106694
摘要

• A real-time accurate growth stage detection model has been developed for high degree of occultation based on DenseNet-fused YOLOv4 deep learning algorithm. • The overall performance of the model has been enhanced by incorporating DenseNet, SPP, modified PANet, and proper activation functions. • At a detection rate of 44.2 FPS , mAP and F 1-score of the proposed model have reached up to 96.20% and 93.61%, respectively outperforming the state-of-the-art original YOLOv4 model. Real-time detection of agricultural growth stages is one of the key steps of estimating yield and intelligent spraying in commercial orchards. However, due to considerable degree of occultation in surrounding leaves, significant overlapping between neighboring fruits, differences in size, color, cluster density, and other growth characteristics, traditional detection methods have the limitation in the accuracy of detecting different growth phases. The current work proposes a real-time object detection framework Dense-YOLOv4 based on an improved version of the YOLOv4 algorithm by including DenseNet in the backbone to optimize feature transfer and reuse. Furthermore, a modified path aggregation network (PANet) has been implemented to preserve fine-grain localized information. The model has been applied to detect different growth stages of mango with high degree of occultation in a complex orchard scenario. At a detection rate of 44.2 FPS , the mean average precision ( mAP ) and F 1 -score of the proposed model have reached up to 96.20 % and 93.61 % , respectively. The proposed Dense-YOLOv4 has outperformed the state-of-the-art YOLOv4 with 7.94 % , 13.10 % , 10.47 % , and 4.73 % increase in precision, recall, F 1 -score, and mAP , respectively. The present work provides an effective and efficient framework to detect different growth stages under a complex orchard scenario and can be extended to different fruit and crop detection, disease detection, and different automated agricultural applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萝卜青菜发布了新的文献求助10
刚刚
文艺百褶裙完成签到,获得积分10
2秒前
姜歪歪关注了科研通微信公众号
2秒前
共享精神应助chaotong采纳,获得10
2秒前
感动白开水完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
Andy完成签到,获得积分10
4秒前
大模型应助Bupivacaine采纳,获得10
5秒前
直率夏烟完成签到,获得积分10
5秒前
隐形曼青应助狗蛋采纳,获得10
6秒前
8秒前
明亮紫易完成签到,获得积分10
9秒前
10秒前
hAFMET完成签到,获得积分10
10秒前
10秒前
12秒前
科研通AI2S应助ahxb采纳,获得10
12秒前
小蘑菇应助xiaohuang采纳,获得10
13秒前
boya完成签到 ,获得积分10
13秒前
13秒前
萝卜青菜发布了新的文献求助10
14秒前
14秒前
研友_CCQ_M完成签到,获得积分10
14秒前
思源应助叶白山采纳,获得10
15秒前
15秒前
16秒前
chaotong发布了新的文献求助10
16秒前
星月夜完成签到,获得积分10
16秒前
HaoZhang完成签到,获得积分20
17秒前
完美世界应助佳期如梦采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
王佳友完成签到,获得积分10
17秒前
17秒前
18秒前
打打应助拼搏的璇采纳,获得10
18秒前
Mic应助刘成采纳,获得10
19秒前
20秒前
自信的冷卉完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424645
求助须知:如何正确求助?哪些是违规求助? 4538996
关于积分的说明 14164586
捐赠科研通 4455962
什么是DOI,文献DOI怎么找? 2444024
邀请新用户注册赠送积分活动 1435084
关于科研通互助平台的介绍 1412452