Real-time growth stage detection model for high degree of occultation using DenseNet-fused YOLOv4

果园 精准农业 目标检测 模式识别(心理学) 计算机科学 人工智能 学位(音乐) 遥感 生态学 声学 生物 农业 物理 地质学 园艺
作者
Arunabha M. Roy,Jayabrata Bhaduri
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106694-106694 被引量:132
标识
DOI:10.1016/j.compag.2022.106694
摘要

• A real-time accurate growth stage detection model has been developed for high degree of occultation based on DenseNet-fused YOLOv4 deep learning algorithm. • The overall performance of the model has been enhanced by incorporating DenseNet, SPP, modified PANet, and proper activation functions. • At a detection rate of 44.2 FPS , mAP and F 1-score of the proposed model have reached up to 96.20% and 93.61%, respectively outperforming the state-of-the-art original YOLOv4 model. Real-time detection of agricultural growth stages is one of the key steps of estimating yield and intelligent spraying in commercial orchards. However, due to considerable degree of occultation in surrounding leaves, significant overlapping between neighboring fruits, differences in size, color, cluster density, and other growth characteristics, traditional detection methods have the limitation in the accuracy of detecting different growth phases. The current work proposes a real-time object detection framework Dense-YOLOv4 based on an improved version of the YOLOv4 algorithm by including DenseNet in the backbone to optimize feature transfer and reuse. Furthermore, a modified path aggregation network (PANet) has been implemented to preserve fine-grain localized information. The model has been applied to detect different growth stages of mango with high degree of occultation in a complex orchard scenario. At a detection rate of 44.2 FPS , the mean average precision ( mAP ) and F 1 -score of the proposed model have reached up to 96.20 % and 93.61 % , respectively. The proposed Dense-YOLOv4 has outperformed the state-of-the-art YOLOv4 with 7.94 % , 13.10 % , 10.47 % , and 4.73 % increase in precision, recall, F 1 -score, and mAP , respectively. The present work provides an effective and efficient framework to detect different growth stages under a complex orchard scenario and can be extended to different fruit and crop detection, disease detection, and different automated agricultural applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助Math4396采纳,获得10
2秒前
小陆发布了新的文献求助10
2秒前
2秒前
3秒前
5秒前
沐夏完成签到,获得积分10
5秒前
yst发布了新的文献求助10
6秒前
科研通AI5应助小熊猫采纳,获得30
6秒前
7秒前
合适忆之完成签到,获得积分10
7秒前
7秒前
不要加糖发布了新的文献求助10
8秒前
徐果发布了新的文献求助10
9秒前
yyxmh羽儿发布了新的文献求助10
9秒前
慈祥的蛋挞完成签到,获得积分10
9秒前
jx完成签到,获得积分10
9秒前
10秒前
多情宛海完成签到 ,获得积分10
10秒前
Math4396发布了新的文献求助10
11秒前
妞妞完成签到,获得积分10
11秒前
科研通AI5应助秦pale采纳,获得10
13秒前
13秒前
13秒前
lll完成签到 ,获得积分10
13秒前
金仕王完成签到,获得积分10
13秒前
lxy应助刘艺伟采纳,获得10
14秒前
带久完成签到 ,获得积分20
15秒前
Ai发布了新的文献求助10
15秒前
丘比特应助小陆采纳,获得10
16秒前
甜甜完成签到,获得积分10
17秒前
17秒前
梦里潇湘发布了新的文献求助10
17秒前
土拨鼠发布了新的文献求助10
18秒前
晗月完成签到,获得积分10
18秒前
垃圾桶发布了新的文献求助10
19秒前
jenningseastera应助仙笛童神采纳,获得10
20秒前
20秒前
kevin完成签到,获得积分10
21秒前
hyx发布了新的文献求助10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150