热电效应
材料科学
塞贝克系数
凝聚态物理
热电材料
声子
声子散射
价(化学)
载流子
兴奋剂
散射
功勋
热导率
光电子学
化学
光学
物理
热力学
复合材料
有机化学
作者
Debattam Sarkar,Subarna Das,Kanishka Biswas
摘要
SnTe has recently emerged as a promising alternative to its structurally analogous title holder thermoelectric material PbTe for thermoelectric energy conversion. Herein, we show co-doping of multiple elements to enhance the thermoelectric performance in SnTe via concurrent electronic structure modulation and inhibition of phonon transports. Sb, Mn, and Se co-doped Sn0.7Ge0.3Te results in an optimized p-type carrier concentration and highly converged valence bands, which markedly increases its Seebeck coefficient. The difference in energy between light and heavy hole valence bands (ΔE) reduces to 0.12 eV in Sn0.57Ge0.3Sb0.1Mn0.03Te0.95Se0.05 compared to 0.35 eV for pristine SnTe, which eventually leads to an elevated power factor of ∼27.7 μW/cm K2 at 823 K. In addition, the drastic reduction in the lattice thermal conductivity to a low value of ∼0.57 W/m K at 823 K is obtained for Sn0.57Ge0.3Sb0.1Mn0.03Te0.95Se0.05 due to significant phonon scattering caused by the simultaneous effect of ferroelectric instability and the formation of nanoprecipitates (5–10 nm) in the SnTe matrix. As a synergy among the ultralow lattice thermal conductivity, optimized charge carriers with enhanced valence band convergence, we obtained a high thermoelectric figure of merit, zT of ∼1.35 at 823 K in Sn0.57Ge0.3Sb0.1Mn0.03Te0.95Se0.05.
科研通智能强力驱动
Strongly Powered by AbleSci AI