自回归滑动平均模型
自回归模型
非线性系统
鉴定(生物学)
基础(线性代数)
径向基函数
度量(数据仓库)
系统标识
数学
噪音(视频)
计算机科学
应用数学
控制理论(社会学)
算法
数学优化
人工智能
统计
数据挖掘
人工神经网络
植物
几何学
控制(管理)
生物
物理
量子力学
图像(数学)
作者
Sheng Chen,S.A. Billings,C.F.N. Cowan,Peter Grant
标识
DOI:10.1080/00207179008953599
摘要
A wide class of discrete-time non-linear systems can be represented by the nonlinear autoregressive moving average (NARMAX) model with exogenous inputs. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise-corrupted data. The algorithm consists of an iterative orthogonal-forward-regression routine coupled with model validity tests. The orthogonal-forward-regression routine selects parsimonious radial-basisTunc-tion models, while the model validity tests measure the quality of fit. The modelling of a liquid level system and an automotive diesel engine are included to demonstrate the effectiveness of the identification procedure.
科研通智能强力驱动
Strongly Powered by AbleSci AI