Neural Networks for Deep Radiotherapy Dose Analysis and Prediction of Liver SBRT Outcomes

肝癌 计算机科学 放射外科 医学 放射治疗 赛博刀 卷积神经网络 人工智能 癌症 放射科 内科学
作者
Bulat Ibragimov,Diego A.S. Toesca,Yixuan Yuan,Albert C. Koong,Daniel T. Chang,Lei Xing
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 1821-1833 被引量:31
标识
DOI:10.1109/jbhi.2019.2904078
摘要

Stereotactic body radiation therapy (SBRT) is a relatively novel treatment modality, with little post-treatment prognostic information reported. This study proposes a novel neural network based paradigm for accurate prediction of liver SBRT outcomes. We assembled a database of patients treated with liver SBRT at our institution. Together with a three-dimensional (3-D) dose delivery plans for each SBRT treatment, other variables such as patients' demographics, quantified abdominal anatomy, history of liver comorbidities, other liver-directed therapies, and liver function tests were collected. We developed a multi-path neural network with the convolutional path for 3-D dose plan analysis and fully connected path for other variables analysis, where the network was trained to predict post-SBRT survival and local cancer progression. To enhance the network robustness, it was initially pre-trained on a large database of computed tomography images. Following n-fold cross-validation, the network automatically identified patients that are likely to have longer survival or late cancer recurrence, i.e., patients with the positive predicted outcome (PPO) of SBRT, and vice versa, i.e., negative predicted outcome (NPO). The predicted results agreed with actual SBRT outcomes with 56% of PPO patients and 0% NPO patients with primary liver cancer survived more than two years after SBRT. Similarly, 82% of PPO patients and 0% of NPO patients with metastatic liver cancer survived two-year threshold. The obtained results were superior to the performance of support vector machine and random forest classifiers. Furthermore, the network was able to identify the critical-to-spare liver regions, and the critical clinical features associated with the highest risks of negative SBRT outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿仙发布了新的文献求助10
1秒前
vision发布了新的文献求助10
1秒前
1秒前
十二月花开完成签到 ,获得积分10
1秒前
coffee完成签到,获得积分10
1秒前
李瑾完成签到,获得积分10
2秒前
小宝完成签到,获得积分10
2秒前
3秒前
呱呱完成签到,获得积分10
3秒前
机智胡萝卜完成签到,获得积分10
3秒前
4秒前
cactus完成签到,获得积分10
5秒前
万能图书馆应助Peral采纳,获得10
5秒前
活力的明雪完成签到,获得积分10
5秒前
6秒前
zzz完成签到,获得积分10
6秒前
6秒前
6秒前
深情安青应助tzjz_zrz采纳,获得20
7秒前
godccc发布了新的文献求助10
7秒前
时光完成签到,获得积分10
7秒前
过时的映安完成签到,获得积分10
7秒前
刘蕴烨发布了新的文献求助10
8秒前
8秒前
giggle发布了新的文献求助10
8秒前
carry发布了新的文献求助10
8秒前
9秒前
浮游应助王星星采纳,获得10
9秒前
NexusExplorer应助wangshibing采纳,获得10
9秒前
林jj发布了新的文献求助10
10秒前
10秒前
10秒前
传奇3应助兆渊采纳,获得10
10秒前
小二郎应助番茄鱼采纳,获得10
10秒前
11秒前
搜集达人应助Akihi采纳,获得10
11秒前
斯文冷亦完成签到 ,获得积分10
11秒前
精明外套发布了新的文献求助10
11秒前
王小聪明完成签到,获得积分10
11秒前
煜琪发布了新的文献求助10
11秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5441539
求助须知:如何正确求助?哪些是违规求助? 4552197
关于积分的说明 14234677
捐赠科研通 4473205
什么是DOI,文献DOI怎么找? 2451294
邀请新用户注册赠送积分活动 1442205
关于科研通互助平台的介绍 1418415