Quantitative characterization of rodent feto-placental vasculature morphology in micro-computed tomography images.

解剖 病理 医学 人胎盘 血流
作者
Yutthapong Tongpob,Shushan Xia,Caitlin S. Wyrwoll,Andrew Mehnert
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:179: 104984-104984 被引量:5
标识
DOI:10.1016/j.cmpb.2019.104984
摘要

Abstract Background and Objective Optimal development of placental vasculature is critical for fetal growth and health outcomes. Many studies characterizing the vascular structure of the fetal side of the placenta have utilized a range of two-dimensional and three-dimensional (3D) imaging techniques including X-ray micro-computed tomography (micro-CT) following perfusion of the vasculature with a radio-opaque compound. The CT approach has been used to study feto-placental vasculature in rodents and humans. Its inherent advantage is that it reveals the 3D structure in high resolution without destroying the sample. This permits both multiple scanning of the sample and follow-up histological investigations in the same sample. Nevertheless, the applicability of the approach is hampered both by the challenging segmentation of the vasculature and a lack of straightforward methodology to quantitate the feto-placental vascular network. This paper addresses these challenges. Methods An end-to-end methodology is presented for automatically segmenting the vasculature; obtaining a Strahler-ordered rooted-tree representation and extracting quantitative features from its nodes, segments and branches (including volume, length, tortuosity and branching angles). The methodology is demonstrated for rat and mouse placentas at the end of gestation (day 22 and day 18, respectively), perfused with Microfil® and imaged using two different micro-CT scanners. Results The 3D visualizations of the resulting vascular trees clearly demonstrate differences between the branching complexity, tree span and tree depth of the mouse and rat placentas. The quantitative characterizations of these trees include not only the fundamental features that have been utilized in other studies of feto-placental vasculature but also several additional features. Boxplots of several of these—tortuosity, number of side branches, number of offspring per branch and branch volume—computed at each Strahler order are presented and interpreted. Differences and similarities between the mouse and rat casts are readily detected. Conclusion The proposed end-to-end methodology, and the implementation presented using a combination of Amira and Matlab, offers researchers in the field of placental vasculature characterization a straightforward and objective approach for quantifying micro-CT vascular datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hui完成签到,获得积分10
刚刚
math完成签到,获得积分10
1秒前
2秒前
小小怪发布了新的文献求助30
3秒前
11完成签到,获得积分10
3秒前
尼斯卡完成签到,获得积分10
3秒前
科研通AI5应助迅速向日葵采纳,获得10
4秒前
Twinkle完成签到,获得积分10
4秒前
5秒前
现代宝宝完成签到,获得积分10
5秒前
Lucas完成签到,获得积分10
5秒前
bettersy完成签到,获得积分10
6秒前
hhh完成签到,获得积分10
6秒前
丹阳阳完成签到,获得积分10
6秒前
lw完成签到,获得积分10
6秒前
licheng完成签到,获得积分10
7秒前
上山石头完成签到,获得积分10
7秒前
hhh完成签到,获得积分10
8秒前
8秒前
南国完成签到,获得积分10
8秒前
wanghua完成签到,获得积分10
9秒前
10秒前
迷路凌柏完成签到 ,获得积分10
11秒前
胖九完成签到,获得积分10
13秒前
淡定之玉完成签到 ,获得积分10
14秒前
霜月十四完成签到,获得积分10
15秒前
狗狗完成签到 ,获得积分10
15秒前
玺月洛离完成签到,获得积分10
15秒前
math发布了新的文献求助20
16秒前
DELI完成签到 ,获得积分10
16秒前
渡劫发布了新的文献求助10
17秒前
米粥饭完成签到,获得积分10
17秒前
科研通AI2S应助杰Sir采纳,获得10
17秒前
小石头完成签到,获得积分10
17秒前
Titi完成签到 ,获得积分10
17秒前
大淼完成签到,获得积分10
18秒前
19秒前
yolo完成签到,获得积分10
22秒前
笨笨凡松完成签到,获得积分10
22秒前
斑其完成签到,获得积分10
22秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Selenium in ruminant nutrition and health 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837609
求助须知:如何正确求助?哪些是违规求助? 3379759
关于积分的说明 10510349
捐赠科研通 3099361
什么是DOI,文献DOI怎么找? 1707079
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772615