材料科学
电容器
电容感应
电容
可伸缩电子设备
液态金属
柔性电子器件
弹性(物理)
数码产品
电子线路
电介质
稳健性(进化)
光电子学
可穿戴技术
电极
纳米技术
接口(物质)
弹性体
介电弹性体
导电体
粘弹性
灵活性(工程)
复合材料
生物电子学
电子元件
可穿戴计算机
佩多:嘘
超材料
薄膜电容器
印刷电路板
电气工程
不稳定性
电子工程
作者
Dan ZHAO,Huali Yang,Zidong He,Shengbin Li,Jianping Yu,Chao Hu,Qi Zhang,Yuanzhao Wu,Yali Xie,Xiaojian Zhu,Yiwei Liu,Yufeng Guo,Pengjun Wang,Run-Wei Li
标识
DOI:10.1002/adfm.202512980
摘要
Abstract As indispensable components in modern electronics, capacitors with flexibility and elasticity are increasingly appealing to meet the demands of emerging wearable devices and electronic skins. Nevertheless, strain‐induced electrical instability remains a critical barrier to their practical implementation. This study presents an intrinsically elastic gallium‐based liquid metal /thermoplastic polyurethane capacitor engineered through dynamic interface design. A unique dynamic electrode/dielectric interface structure is constructed via gravity‐assisted deposition, which effectively suppresses the electrode area changes upon stretching through interface flattening. Concurrently, the gradient distribution design of liquid metal particles endows the electrode/dielectric boundary with dynamic migration capability under strain, thereby adaptively compensating for dielectric thickness variations. Leveraging this synergistic interface stabilization mechanism, the fabricated capacitor demonstrates exceptional mechanical robustness and capacitive stability, achieving an ultralow capacitance fluctuation of 1.29% under 50% strain while maintaining stable functionality over 1000 tensile stretching cycles. Successfully integrated as a tuning element in elastic LC oscillator circuits, the device enabled frequency‐stable near‐field communication under large deformations, showcasing its transformative potential for wearable electronics and fully elastic circuit systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI