Assessing patient risk of central line-associated bacteremia via machine learning

医学 菌血症 中心线 直线(几何图形) 重症监护医学 微生物学 抗生素 数学 几何学 生物
作者
Cole Beeler,Lana Dbeibo,Kristen Kelley,Levi Thatcher,Douglas Webb,Amadou Bah,Patrick O. Monahan,Nicole R. Fowler,Spencer Nicol,Alisa Judy-Malcolm,Jose Azar
出处
期刊:American Journal of Infection Control [Elsevier BV]
卷期号:46 (9): 986-991 被引量:40
标识
DOI:10.1016/j.ajic.2018.02.021
摘要

•Machine learning is being increasingly used in healthcare to predict risk. •Its models offer avoidance of bias, personalization, and a nonlinear approach. •We describe the development of a model to predict CLABSI, yielding an AUROC of 0.82. •Infection preventionists use this model to target interventions to high-risk patients to save time. Background Central line-associated bloodstream infections (CLABSIs) contribute to increased morbidity, length of hospital stay, and cost. Despite progress in understanding the risk factors, there remains a need to accurately predict the risk of CLABSIs and, in real time, prevent them from occurring. Methods A predictive model was developed using retrospective data from a large academic healthcare system. Models were developed with machine learning via construction of random forests using validated input variables. Results Fifteen variables accounted for the most significant effect on CLABSI prediction based on a retrospective study of 70,218 unique patient encounters between January 1, 2013, and May 31, 2016. The area under the receiver operating characteristic curve for the best-performing model was 0.82 in production. Discussion This model has multiple applications for resource allocation for CLABSI prevention, including serving as a tool to target patients at highest risk for potentially cost-effective but otherwise time-limited interventions. Conclusions Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection. Central line-associated bloodstream infections (CLABSIs) contribute to increased morbidity, length of hospital stay, and cost. Despite progress in understanding the risk factors, there remains a need to accurately predict the risk of CLABSIs and, in real time, prevent them from occurring. A predictive model was developed using retrospective data from a large academic healthcare system. Models were developed with machine learning via construction of random forests using validated input variables. Fifteen variables accounted for the most significant effect on CLABSI prediction based on a retrospective study of 70,218 unique patient encounters between January 1, 2013, and May 31, 2016. The area under the receiver operating characteristic curve for the best-performing model was 0.82 in production. This model has multiple applications for resource allocation for CLABSI prevention, including serving as a tool to target patients at highest risk for potentially cost-effective but otherwise time-limited interventions. Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助CAt5采纳,获得10
1秒前
犹豫忆灵完成签到,获得积分10
1秒前
沫荔完成签到 ,获得积分10
2秒前
沉静寒云完成签到 ,获得积分10
3秒前
SciGPT应助只只呀采纳,获得10
3秒前
xixi完成签到 ,获得积分10
4秒前
lixiangrui110完成签到,获得积分10
4秒前
星辰大海应助1130采纳,获得10
4秒前
4秒前
逍遥自在完成签到,获得积分10
5秒前
YYY完成签到,获得积分10
6秒前
地表飞猪完成签到,获得积分10
6秒前
fdpb完成签到,获得积分10
6秒前
8秒前
yingying完成签到 ,获得积分10
8秒前
落霞完成签到,获得积分10
8秒前
victhr完成签到,获得积分10
8秒前
科研通AI2S应助shouyu29采纳,获得10
9秒前
yu完成签到 ,获得积分10
9秒前
xfffffff发布了新的文献求助10
9秒前
喵喵完成签到 ,获得积分10
10秒前
demoestar完成签到 ,获得积分10
11秒前
俞孤风完成签到,获得积分10
12秒前
友好傲白完成签到,获得积分10
12秒前
久旱逢甘霖完成签到 ,获得积分10
13秒前
WEN完成签到,获得积分10
14秒前
whyme完成签到,获得积分10
15秒前
meimale完成签到,获得积分10
16秒前
dique3hao完成签到 ,获得积分10
17秒前
柠檬完成签到 ,获得积分10
17秒前
LIKUN完成签到,获得积分10
18秒前
高高梦山完成签到 ,获得积分10
20秒前
hbpu230701完成签到,获得积分0
21秒前
飘文献完成签到,获得积分10
22秒前
犹豫忆灵关注了科研通微信公众号
22秒前
聪明的泡面完成签到 ,获得积分10
23秒前
务实的奇迹完成签到 ,获得积分10
23秒前
Cheshire完成签到,获得积分10
24秒前
26秒前
慕青应助wjw采纳,获得10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792652
求助须知:如何正确求助?哪些是违规求助? 3336874
关于积分的说明 10282421
捐赠科研通 3053766
什么是DOI,文献DOI怎么找? 1675684
邀请新用户注册赠送积分活动 803701
科研通“疑难数据库(出版商)”最低求助积分说明 761510