Assessing patient risk of central line-associated bacteremia via machine learning

医学 菌血症 中心线 直线(几何图形) 重症监护医学 微生物学 抗生素 几何学 数学 生物
作者
Cole Beeler,Lana Dbeibo,Kristen Kelley,Levi Thatcher,Douglas Webb,Amadou Bah,Patrick O. Monahan,Nicole R. Fowler,Spencer Nicol,Alisa Judy-Malcolm,Jose Azar
出处
期刊:American Journal of Infection Control [Elsevier BV]
卷期号:46 (9): 986-991 被引量:40
标识
DOI:10.1016/j.ajic.2018.02.021
摘要

•Machine learning is being increasingly used in healthcare to predict risk. •Its models offer avoidance of bias, personalization, and a nonlinear approach. •We describe the development of a model to predict CLABSI, yielding an AUROC of 0.82. •Infection preventionists use this model to target interventions to high-risk patients to save time. Background Central line-associated bloodstream infections (CLABSIs) contribute to increased morbidity, length of hospital stay, and cost. Despite progress in understanding the risk factors, there remains a need to accurately predict the risk of CLABSIs and, in real time, prevent them from occurring. Methods A predictive model was developed using retrospective data from a large academic healthcare system. Models were developed with machine learning via construction of random forests using validated input variables. Results Fifteen variables accounted for the most significant effect on CLABSI prediction based on a retrospective study of 70,218 unique patient encounters between January 1, 2013, and May 31, 2016. The area under the receiver operating characteristic curve for the best-performing model was 0.82 in production. Discussion This model has multiple applications for resource allocation for CLABSI prevention, including serving as a tool to target patients at highest risk for potentially cost-effective but otherwise time-limited interventions. Conclusions Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection. Central line-associated bloodstream infections (CLABSIs) contribute to increased morbidity, length of hospital stay, and cost. Despite progress in understanding the risk factors, there remains a need to accurately predict the risk of CLABSIs and, in real time, prevent them from occurring. A predictive model was developed using retrospective data from a large academic healthcare system. Models were developed with machine learning via construction of random forests using validated input variables. Fifteen variables accounted for the most significant effect on CLABSI prediction based on a retrospective study of 70,218 unique patient encounters between January 1, 2013, and May 31, 2016. The area under the receiver operating characteristic curve for the best-performing model was 0.82 in production. This model has multiple applications for resource allocation for CLABSI prevention, including serving as a tool to target patients at highest risk for potentially cost-effective but otherwise time-limited interventions. Machine learning can be used to develop accurate models to predict the risk of CLABSI in real time prior to the development of infection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
默问完成签到,获得积分10
2秒前
2秒前
鱼鱼鱼发布了新的文献求助10
2秒前
2秒前
2秒前
微笑枫发布了新的文献求助10
3秒前
莫离发布了新的文献求助10
4秒前
甜甜亦丝发布了新的文献求助10
4秒前
5秒前
Aipoi1发布了新的文献求助10
5秒前
5秒前
浮游应助晨妍采纳,获得10
5秒前
SciGPT应助peipei采纳,获得10
6秒前
Cx完成签到,获得积分10
6秒前
6秒前
liubeibeidjke发布了新的文献求助10
7秒前
7秒前
追寻电脑发布了新的文献求助10
7秒前
7秒前
赘婿应助老衲采纳,获得10
7秒前
8秒前
lxl完成签到,获得积分10
8秒前
无处不在完成签到 ,获得积分10
8秒前
眼睛大的伊完成签到,获得积分10
8秒前
jeronimo发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
傻傻的仙人掌完成签到,获得积分10
10秒前
10秒前
董文同学发布了新的文献求助10
11秒前
lxl发布了新的文献求助10
12秒前
追风少年发布了新的文献求助10
13秒前
1207发布了新的文献求助10
13秒前
雪饼完成签到 ,获得积分10
13秒前
14秒前
追寻电脑完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609