已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised Representation Learning for Tissue Segmentation in Histopathological Images: From Global to Local Contrast

计算机科学 人工智能 分割 判别式 编码(内存) 模式识别(心理学) 任务(项目管理) 图像分割 注释 构造(python库) 对比度(视觉) 像素 组分(热力学) 经济 管理 程序设计语言 物理 热力学
作者
Zeyu Gao,Chang Jia,Li Yang,Xianli Zhang,Bangyang Hong,Jialun Wu,Tieliang Gong,Chunbao Wang,Deyu Meng,Yefeng Zheng,Chen Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (12): 3611-3623 被引量:17
标识
DOI:10.1109/tmi.2022.3191398
摘要

Tissue segmentation is an essential task in computational pathology. However, relevant datasets for such a pixel-level classification task are hard to obtain due to the difficulty of annotation, bringing obstacles for training a deep learning-based segmentation model. Recently, contrastive learning has provided a feasible solution for mitigating the heavy reliance of deep learning models on annotation. Nevertheless, applying contrastive loss to the most abstract image representations, existing contrastive learning frameworks focus on global features, therefore, are less capable of encoding finer-grained features (e.g., pixel-level discrimination) for the tissue segmentation task. Enlightened by domain knowledge, we design three contrastive learning tasks with multi-granularity views (from global to local) for encoding necessary features into representations without accessing annotations. Specifically, we construct: (1) an image-level task to capture the difference between tissue components, i.e., encoding the component discrimination; (2) a superpixel-level task to learn discriminative representations of local regions with different tissue components, i.e., encoding the prototype discrimination; (3) a pixel-level task to encourage similar representations of different tissue components within a local region, i.e., encoding the spatial smoothness. Through our global-to-local pre-training strategy, the learned representations can reasonably capture the domain-specific and fine-grained patterns, making them easily transferable to various tissue segmentation tasks in histopathological images. We conduct extensive experiments on two tissue segmentation datasets, while considering two real-world scenarios with limited or sparse annotations. The experimental results demonstrate that our framework is superior to existing contrastive learning methods and can be easily combined with weakly supervised and semi-supervised segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王玉河发布了新的文献求助10
刚刚
JamesPei应助ccc采纳,获得10
2秒前
搜集达人应助WHy采纳,获得10
6秒前
朱厚璁完成签到,获得积分10
7秒前
领导范儿应助科研通管家采纳,获得80
7秒前
大模型应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得30
7秒前
英姑应助科研通管家采纳,获得10
7秒前
12秒前
仁爱水之发布了新的文献求助10
14秒前
19秒前
1226完成签到,获得积分20
20秒前
张夏萌完成签到,获得积分20
20秒前
21秒前
小张想发刊完成签到,获得积分10
22秒前
24秒前
ccc发布了新的文献求助10
24秒前
张夏萌发布了新的文献求助10
26秒前
www发布了新的文献求助10
28秒前
梦里的三片雪花完成签到,获得积分10
29秒前
32秒前
大小米发布了新的文献求助200
34秒前
36秒前
传奇3应助WHy采纳,获得10
37秒前
量子星尘发布了新的文献求助10
41秒前
zhuazhua完成签到 ,获得积分10
42秒前
44秒前
深情安青应助标致的妙之采纳,获得10
45秒前
黄鑫完成签到,获得积分10
46秒前
47秒前
伏坎发布了新的文献求助10
49秒前
清秀聪健发布了新的文献求助10
50秒前
洋溢发布了新的文献求助10
50秒前
彭于晏应助无敌脉冲黄桃采纳,获得10
51秒前
1226发布了新的文献求助10
54秒前
852应助t250采纳,获得10
55秒前
zipi完成签到,获得积分10
55秒前
标致的妙之完成签到,获得积分20
1分钟前
1分钟前
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4235127
求助须知:如何正确求助?哪些是违规求助? 3768602
关于积分的说明 11839703
捐赠科研通 3426251
什么是DOI,文献DOI怎么找? 1880327
邀请新用户注册赠送积分活动 932930
科研通“疑难数据库(出版商)”最低求助积分说明 839988