亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multi-feature fusion-based domain adversarial neural network for fault diagnosis of rotating machinery

特征(语言学) 断层(地质) 人工智能 计算机科学 时域 卷积(计算机科学) 模式识别(心理学) 领域(数学分析) 频域 人工神经网络 快速傅里叶变换 特征提取 数据挖掘 深度学习 机器学习 算法 计算机视觉 数学 数学分析 哲学 语言学 地震学 地质学
作者
Dong Zhang,Lili Zhang
出处
期刊:Measurement [Elsevier BV]
卷期号:200: 111576-111576 被引量:27
标识
DOI:10.1016/j.measurement.2022.111576
摘要

Deep learning (DL)-based Fault Diagnosis (FD) methods have been wildly used in the industry domain for the guarantee of rotating machinery. Training these models often deserver abundant labeled data from complex or variable working conditions. However, it is knotty to obtain massive data of different types of faults for the working condition of interest in engineering practice which also greatly hinders the improvement of DL-based FD methods. In addition, exiting DL-based method could not achieve satisfactory diagnosis results when the working condition between source-domain (training data) and target-domain (testing data) is different. This paper proposes a novel FD method using multi-feature fusion scheme and an Improved Domain Adversarial Neural Network (IDANN). Firstly, the Fast Fourier Transform (FFT) is utilized for time-to-frequency domain conversion of raw signals. Then, the multi-feature fusion scheme is adopted to fuse the spectral samples with different working conditions, which uses multi-branch convolution layers as feature extractor and fuser. After that, the fused features are fed into IDANN as input, and the adversarial training strategy is used to train the IDANN model until an ideal equilibrium state is achieved. Finally, the feature extractor and label predictor are separated from the trained IDANN model for classification of health conditions. To verify the performance of IDANN, two public bearing datasets from Case Western Reserve University (CWRU) and Paderborn University are utilized, and results show that IDANN achieves superior diagnosis performance by making full use of multi-source of signal data compared with other conventional or DL-based diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
研友_Zzrx6Z完成签到,获得积分10
6秒前
ouyangshi完成签到 ,获得积分10
9秒前
16秒前
ning发布了新的文献求助10
19秒前
Kumquat完成签到,获得积分10
19秒前
24秒前
等待的剑身完成签到,获得积分10
28秒前
29秒前
ning完成签到,获得积分20
30秒前
渡增越完成签到,获得积分10
37秒前
传奇3应助神马研通采纳,获得10
39秒前
香蕉觅云应助ning采纳,获得10
40秒前
Acid完成签到 ,获得积分10
41秒前
yu完成签到 ,获得积分10
42秒前
余念安完成签到 ,获得积分10
56秒前
58秒前
1分钟前
sola完成签到 ,获得积分10
1分钟前
GlockieZhao完成签到,获得积分10
1分钟前
一路微笑完成签到,获得积分10
1分钟前
随性随缘随命完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
XiaoLiu应助科研通管家采纳,获得10
1分钟前
XiaoLiu应助科研通管家采纳,获得10
1分钟前
ccc关注了科研通微信公众号
1分钟前
1分钟前
香蕉觅云应助qqJing采纳,获得10
1分钟前
Herman完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
shaylie完成签到 ,获得积分10
2分钟前
叶子完成签到 ,获得积分20
2分钟前
sue发布了新的文献求助10
2分钟前
2分钟前
qqJing发布了新的文献求助10
2分钟前
2分钟前
YifanWang应助sue采纳,获得30
2分钟前
fuiee完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4375743
求助须知:如何正确求助?哪些是违规求助? 3871856
关于积分的说明 12067427
捐赠科研通 3514745
什么是DOI,文献DOI怎么找? 1928795
邀请新用户注册赠送积分活动 970453
科研通“疑难数据库(出版商)”最低求助积分说明 869194