已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interpretable AI Explores Effective Components of CAD/CAM Resin Composites

抗弯强度 随机森林 梯度升压 材料科学 弯曲模量 计算机科学 复合数 Boosting(机器学习) 复合材料 算法 机器学习
作者
H. Li,T. Sakai,Akira Tanaka,Monami Ogura,C Lee,Satoshi Yamaguchi,Satoshi Imazato
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:101 (11): 1363-1371 被引量:20
标识
DOI:10.1177/00220345221089251
摘要

High flexural strength of computer-aided manufacturing resin composite blocks (CAD/CAM RCBs) are required in clinical scenarios. However, the conventional in vitro approach of modifying materials’ composition by trial and error was not efficient to explore the effective components that contribute to the flexural strength. Machine learning (ML) is a powerful tool to achieve the above goals. Therefore, the aim of this study was to develop ML models to predict the flexural strength of CAD/CAM RCBs and explore the components that affect flexural strength as the first step. The composition of 12 commercially available products and flexural strength were collected from the manufacturers and literature. The initial data consisted of 16 attributes and 12 samples. Considering that the input data for each sample were recognized as a multidimensional vector, a fluctuation range of 0.1 was proposed for each vector and the number of samples was augmented to 120. Regression algorithms—that is, random forest (RF), extra trees, gradient boosting decision tree, light gradient boosting machine, and extreme gradient boosting—were used to develop 5 ML models to predict flexural strength. An exhaustive search and feature importance analysis were conducted to analyze the effective components that affected flexural strength. The R 2 values for each model were 0.947, 0.997, 0.998, 0.983, and 0.927, respectively. The relative errors of all the algorithms were within 15%. Among the high predicted flexural strength group in the exhaustive search, urethane dimethacrylate was contained in all compositions. Filler content and triethylene glycol dimethacrylate were the top 2 features predicted by all models in the feature importance analysis. ZrSiO 4 was the third important feature for all models, except the RF model. The ML models established in this study successfully predicted the flexural strength of CAD/CAM RCBs and identified the effective components that affected flexural strength based on the available data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐谷蓝完成签到,获得积分10
2秒前
北觅完成签到 ,获得积分10
2秒前
mix完成签到 ,获得积分10
3秒前
直率凝丝发布了新的文献求助10
3秒前
4秒前
Ava应助佳佳采纳,获得10
4秒前
ZJX应助小白采纳,获得10
4秒前
zsl发布了新的文献求助10
5秒前
Jiro完成签到,获得积分10
5秒前
YYJ完成签到 ,获得积分10
5秒前
wangwang发布了新的文献求助10
8秒前
唐唐的猫咪完成签到 ,获得积分10
9秒前
合适熊猫完成签到 ,获得积分10
12秒前
111111完成签到,获得积分0
12秒前
韩寒完成签到 ,获得积分10
13秒前
自信完成签到 ,获得积分10
13秒前
赵正洁完成签到 ,获得积分10
13秒前
李爱国应助酷炫的项链采纳,获得10
14秒前
哈哈完成签到 ,获得积分10
17秒前
Carrots完成签到 ,获得积分10
18秒前
18秒前
霸气的冰旋完成签到 ,获得积分10
18秒前
18秒前
wdzz发布了新的文献求助10
21秒前
卞珂发布了新的文献求助10
21秒前
Kunning完成签到 ,获得积分10
24秒前
火星上含芙完成签到 ,获得积分10
24秒前
momo完成签到,获得积分10
27秒前
27秒前
浮游应助wdzz采纳,获得10
27秒前
kaka完成签到,获得积分0
27秒前
卞珂完成签到,获得积分10
28秒前
兔图图完成签到,获得积分10
28秒前
numagok完成签到,获得积分10
30秒前
斯文败类应助研友_8RyzBZ采纳,获得10
30秒前
31秒前
momo发布了新的文献求助10
32秒前
上官若男应助李小小采纳,获得10
35秒前
wangwang完成签到,获得积分10
35秒前
GingerF举报pancake求助涉嫌违规
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290747
求助须知:如何正确求助?哪些是违规求助? 4442048
关于积分的说明 13829071
捐赠科研通 4324837
什么是DOI,文献DOI怎么找? 2373882
邀请新用户注册赠送积分活动 1369248
关于科研通互助平台的介绍 1333323