Automated detection of posterior restorations in permanent teeth using artificial intelligence on intraoral photographs

汞齐(化学) 分类 金标准(测试) 计算机科学 后牙 牙科 人工智能 接收机工作特性 口腔正畸科 医学 机器学习 化学 电极 物理化学 内科学
作者
Paula Engels,Ole Meyer,Jule Schönewolf,Anne Schlickenrieder,Reinhard Hickel,Marc Hesenius,Volker Gruhn,Jan Kühnisch
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:121: 104124-104124 被引量:16
标识
DOI:10.1016/j.jdent.2022.104124
摘要

Intraoral photographs might be considered the machine-readable equivalent of a clinical-based visual examination and can potentially be used to detect and categorize dental restorations. The first objective of this study was to develop a deep learning-based convolutional neural network (CNN) for automated detection and categorization of posterior composite, cement, amalgam, gold and ceramic restorations on clinical photographs. Second, this study aimed to determine the diagnostic accuracy for the developed CNN (test method) compared to that of an expert evaluation (reference standard). The whole image set of 1761 images (483 of unrestored teeth, 570 of composite restorations, 213 of cements, 278 of amalgam restorations, 125 of gold restorations and 92 of ceramic restorations) was divided into a training set (N = 1407, 401, 447, 66, 231, 93, and 169, respectively) and a test set (N = 354, 82, 123, 26, 47, 32, and 44). The expert diagnoses served as a reference standard for cyclic training and repeated evaluation of the CNN (ResNeXt-101–32 × 8d), which was trained by using image augmentation and transfer learning. Statistical analysis included the calculation of contingency tables, areas under the receiver operating characteristic curve and saliency maps. After training was complete, the CNN was able to categorize restorations correctly with the following diagnostic accuracy values: 94.9% for unrestored teeth, 92.9% for composites, 98.3% for cements, 99.2% for amalgam restorations, 99.4% for gold restorations and 97.8% for ceramic restorations. It was possible to categorize different types of posterior restorations on intraoral photographs automatically with a good diagnostic accuracy. Dental diagnostics might be supported by artificial intelligence-based algorithms in the future. However, further improvements are needed to increase accuracy and practicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PG完成签到 ,获得积分10
1秒前
1秒前
1秒前
风趣的惜灵完成签到,获得积分10
2秒前
领导范儿应助123321采纳,获得10
2秒前
鱼鱼发布了新的文献求助20
2秒前
飞哥yyds完成签到,获得积分10
2秒前
小马甲应助合适世平采纳,获得10
2秒前
小蘑菇应助zqz0703采纳,获得10
3秒前
lyt完成签到,获得积分20
3秒前
丙烯酰氯发布了新的文献求助10
3秒前
小二郎应助GC_AIBio采纳,获得10
4秒前
Li完成签到 ,获得积分20
4秒前
6秒前
打卡下班应助T拐拐采纳,获得10
7秒前
7秒前
阿强完成签到,获得积分10
7秒前
7秒前
Genius完成签到,获得积分10
8秒前
庭中踏雪来完成签到 ,获得积分10
8秒前
Shinchan完成签到,获得积分10
8秒前
燕不留声完成签到 ,获得积分10
9秒前
However完成签到,获得积分10
9秒前
xzy998应助独云采纳,获得10
10秒前
lancerimpp完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
随意完成签到,获得积分10
12秒前
12秒前
彭彭完成签到,获得积分10
12秒前
QIQI完成签到,获得积分10
12秒前
泡椒发布了新的文献求助10
14秒前
南汉高贵的陈皮完成签到 ,获得积分10
14秒前
14秒前
小杜小杜发布了新的文献求助10
14秒前
uulli完成签到,获得积分10
14秒前
niuniu发布了新的文献求助10
15秒前
chock完成签到,获得积分10
15秒前
Li完成签到,获得积分10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4113049
求助须知:如何正确求助?哪些是违规求助? 3651518
关于积分的说明 11562484
捐赠科研通 3355759
什么是DOI,文献DOI怎么找? 1843463
邀请新用户注册赠送积分活动 909455
科研通“疑难数据库(出版商)”最低求助积分说明 826274