Atmospheric Turbulence Removal in Long-Range Imaging Using a Data-Driven-Based Approach

人工智能 计算机科学 自编码 保险丝(电气) 帧(网络) 计算机视觉 模式识别(心理学) 聚类分析 失真(音乐) 卷积神经网络 集合(抽象数据类型) 编码器 深度学习 电信 放大器 计算机网络 带宽(计算) 电气工程 程序设计语言 工程类 操作系统
作者
Hamidreza Fazlali,Shahram Shirani,Michael BradforSd,T. Kirubarajan
出处
期刊:International Journal of Computer Vision [Springer Science+Business Media]
卷期号:130 (4): 1031-1049 被引量:8
标识
DOI:10.1007/s11263-022-01584-x
摘要

Atmospheric turbulence is one of the causes of quality degradation in long-range imaging and its removal from degraded frame sequences is considered an ill-posed problem. There have been numerous attempts to address this problem. However, there is still room for improving the quality of the restored images. In contrast to the previous approaches to address this problem, in this paper, we propose a data-driven approach. First, an end-to-end deep convolutional autoencoder is trained using natural images and its encoder part is exploited to extract high-level features from all the frames in a sequence that are distorted by atmospheric turbulence. Then, the binary search algorithm and the unsupervised K-means clustering method are jointly exploited to analyze these high-level features to find the best set of frames that can help accurately reconstruct the original high-quality image. After removing the geometric distortion from the selected frames, the saliency map of the average set of the selected frames is calculated and used with the original selected frames to train an end-to-end multi-scale saliency-guided deep convolutional autoencoder network to fuse the registered frames. This network uses different scales of the input frames and their saliency maps for better fusion performance. Specifically, the fusion network learns how to fuse these sets of frames and also exploit information from their saliency map to generate an image with more details of the scene. Finally, this fused image is post-processed to boost the visual quality of the output fused image. The experimental results on both synthetically and naturally distorted sequences show the superiority of our method compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu发布了新的文献求助10
刚刚
Ted发布了新的文献求助10
2秒前
哇wwwww发布了新的文献求助10
2秒前
3秒前
免VVVV免发布了新的文献求助10
3秒前
情怀应助追寻蚂蚁采纳,获得30
3秒前
肉肉发布了新的文献求助20
4秒前
李健的小迷弟应助锌小子采纳,获得10
4秒前
香蕉觅云应助蒋若之采纳,获得10
7秒前
天天快乐应助闪闪半芹采纳,获得10
8秒前
路见不平完成签到,获得积分10
8秒前
banboo发布了新的文献求助10
9秒前
大卷完成签到,获得积分10
9秒前
10秒前
小吉发布了新的文献求助10
11秒前
科研通AI5应助吕迪采纳,获得10
11秒前
小马甲应助80s采纳,获得10
13秒前
深情安青应助TT采纳,获得10
15秒前
16秒前
16秒前
xiaoxiao发布了新的文献求助10
17秒前
颗粒完成签到,获得积分10
17秒前
清爽秋白完成签到,获得积分10
17秒前
斯文败类应助猪猪hero采纳,获得10
18秒前
20秒前
鲜艳的皮皮虾完成签到 ,获得积分10
20秒前
斯文败类应助zxj采纳,获得10
23秒前
25秒前
26秒前
26秒前
思源应助2534165采纳,获得10
27秒前
深情安青应助wangsy采纳,获得10
29秒前
29秒前
56发布了新的文献求助10
29秒前
30秒前
左右发布了新的文献求助10
30秒前
蒸馏水完成签到,获得积分10
32秒前
阿王完成签到,获得积分10
33秒前
33秒前
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
Reference Guide for Dynamic Models of HVAC Equipment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836201
求助须知:如何正确求助?哪些是违规求助? 3378568
关于积分的说明 10504924
捐赠科研通 3098152
什么是DOI,文献DOI怎么找? 1706298
邀请新用户注册赠送积分活动 820954
科研通“疑难数据库(出版商)”最低求助积分说明 772348