Customized Carbon Dots with Predictable Optical Properties Synthesized at Room Temperature Guided by Machine Learning

荧光 乙二胺 材料科学 溶解度 乙烯醇 纳米技术 光漂白 聚合物 化学 光学 有机化学 复合材料 物理
作者
Qin Hong,Xiaoyuan Wang,Yating Gao,Jian Lv,Binbin Chen,Da‐Wei Li,Ruo‐Can Qian
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (3): 998-1009 被引量:63
标识
DOI:10.1021/acs.chemmater.1c03220
摘要

Fluorescent carbon dots (CDs) have been increasingly used in fluorescence detection and imaging based on their tunable fluorescence (FL) and resistance to photobleaching. However, the fast and reliable design of fluorescent CDs with specific optical properties involves a number of factors, such as the concentration of precursors, reaction time, and solvents. Therefore, it is usually considered difficult to design CDs with favorable optical properties. Herein, we report an extreme gradient boosting (XGBoost) model for guiding the fabrication of CDs with high FL intensity and tunable emission from p-benzoquinone (PBQ) and ethylenediamine (EDA) in different solvents at room temperature. Among a variety of studied machine learning models, XGBoost shows the best performance in the field of material synthesis, with a prediction coefficient of determination (R2) higher than 0.96. The XGBoost model can effectively predict the optical properties of CDs, including the maximum FL intensity and emission centers. Guided by the XGBoost model, various green or blue fluorescent CDs with adjustable emission centers and solubility properties are designed and fabricated accurately. These CDs are successfully applied for Fe3+ detection, sustained drug release, whole-cell imaging, and poly(vinyl alcohol) (PVA) film preparation. These results suggest the great potential of the combination of machine learning and CD synthesis as an effective strategy to help researchers realize accurate selection of reasonable CDs with individual customized properties to achieve different goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Lucas应助兴奋的铸海采纳,获得10
2秒前
李进完成签到,获得积分10
3秒前
诸事顺利完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
Stygain完成签到 ,获得积分10
7秒前
8秒前
李健应助半糖拿铁采纳,获得10
9秒前
avenue完成签到,获得积分10
10秒前
东方天磊完成签到 ,获得积分10
10秒前
yuanjingnan发布了新的文献求助10
14秒前
乐乐应助chong0919采纳,获得10
17秒前
打打应助Elaine采纳,获得10
18秒前
林那完成签到,获得积分10
18秒前
李爱国应助温柔以蓝采纳,获得10
18秒前
妥妥酱完成签到,获得积分10
18秒前
光亮青柏完成签到 ,获得积分10
20秒前
冰魂应助Hu采纳,获得10
20秒前
yolodys完成签到,获得积分10
20秒前
小小人儿完成签到,获得积分20
21秒前
23秒前
橘子完成签到,获得积分10
24秒前
迷人芒果发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
30秒前
星辰大海应助郭德好采纳,获得10
34秒前
yuki完成签到,获得积分10
34秒前
张易发布了新的文献求助10
34秒前
34秒前
Owen应助smy采纳,获得10
36秒前
平常的寻真完成签到,获得积分10
37秒前
quanjiazhi完成签到,获得积分10
37秒前
38秒前
寒士完成签到,获得积分10
39秒前
LL应助jzyy采纳,获得10
43秒前
44秒前
颠颠的哦发布了新的文献求助30
46秒前
47秒前
简单远山发布了新的文献求助10
49秒前
50秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863180
求助须知:如何正确求助?哪些是违规求助? 3405616
关于积分的说明 10645533
捐赠科研通 3129218
什么是DOI,文献DOI怎么找? 1725658
邀请新用户注册赠送积分活动 831163
科研通“疑难数据库(出版商)”最低求助积分说明 779656