miRe2e: a full end-to-end deep model based on transformers for prediction of pre-miRNAs

深度学习 计算机科学 人工智能 端到端原则 源代码 机器学习 特征工程 数据挖掘 计算生物学
作者
Jonathan Raad,Leandro A Bugnon,Diego H Milone,Georgina Stegmayer
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (5): 1191-1197
标识
DOI:10.1093/bioinformatics/btab823
摘要

MicroRNAs (miRNAs) are small RNA sequences with key roles in the regulation of gene expression at post-transcriptional level in different species. Accurate prediction of novel miRNAs is needed due to their importance in many biological processes and their associations with complicated diseases in humans. Many machine learning approaches were proposed in the last decade for this purpose, but requiring handcrafted features extraction in order to identify possible de novo miRNAs. More recently, the emergence of deep learning has allowed the automatic feature extraction, learning relevant representations by themselves. However, the state-of-art deep models require complex pre-processing of the input sequences and prediction of their secondary structure in order to reach an acceptable performance.In this work we present miRe2e, the first full end-to-end deep learning model for pre-miRNA prediction. This model is based on Transformers, a neural architecture that uses attention mechanisms to infer global dependencies between inputs and outputs. It is capable of receiving the raw genome-wide data as input, without any pre-processing nor feature engineering. After a training stage with known pre-miRNAs, hairpin and non-harpin sequences, it can identify all the pre-miRNA sequences within a genome. The model has been validated through several experimental setups using the human genome, and it was compared with state-of-the-art algorithms obtaining 10 times better performance.Webdemo available at https://sinc.unl.edu.ar/web-demo/miRe2e/ and source code available for download at https://github.com/sinc-lab/miRe2e.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
大佬发布了新的文献求助10
2秒前
2秒前
lbq800完成签到 ,获得积分10
3秒前
Willing完成签到,获得积分10
3秒前
Akim应助tt采纳,获得10
4秒前
潇潇完成签到 ,获得积分10
4秒前
5秒前
5秒前
yyx发布了新的文献求助10
5秒前
ZhangMingHe发布了新的文献求助10
6秒前
方法法国衣服头发完成签到,获得积分10
6秒前
6秒前
8秒前
9秒前
QL发布了新的文献求助20
9秒前
10秒前
11秒前
喃喃发布了新的文献求助10
12秒前
俊熙C完成签到,获得积分20
13秒前
北工大彭于晏完成签到,获得积分10
14秒前
美好斓发布了新的文献求助30
14秒前
16秒前
benhzh发布了新的文献求助10
17秒前
17秒前
Harry完成签到,获得积分0
17秒前
研友_VZG7GZ应助angel采纳,获得10
19秒前
丑丑虎发布了新的文献求助10
20秒前
能干的邹发布了新的文献求助10
20秒前
科研F5完成签到,获得积分10
21秒前
xx发布了新的文献求助10
22秒前
李健的粉丝团团长应助li采纳,获得10
23秒前
细心的白凡完成签到,获得积分20
23秒前
24秒前
jj发布了新的文献求助10
24秒前
starry完成签到 ,获得积分10
25秒前
打打应助aa采纳,获得30
26秒前
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409