Nearest neighbors-based adaptive density peaks clustering with optimized allocation strategy

聚类分析 计算机科学 相似性(几何) 最近邻搜索 数学 星团(航天器) 集合(抽象数据类型) 最近邻链算法 点(几何) k-最近邻算法 模式识别(心理学) 数据挖掘 人工智能 算法 模糊聚类 图像(数学) 树冠聚类算法 几何学 程序设计语言
作者
Lin Sun,Xiaoying Qin,Weiping Ding,Jiucheng Xu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:473: 159-181 被引量:28
标识
DOI:10.1016/j.neucom.2021.12.019
摘要

Density peaks clustering (DPC) model is simple and effective in clustering data of any shape, and has attracted wide attention from scholars in recent years. However, it is difficult for DPC to determine the cutoff distance when calculating the local density of points, and to select the correct cluster centers of data with large differences of density between clusters or multi-density peaks in clusters; in addition, the point allocation method in DPC has low accuracy. To overcome these drawbacks, this paper presents a novel nearest neighbors-based adaptive DPC algorithm with an optimized allocation strategy (NADPC in short), and demonstrates its application in image clustering. First, the mutual nearest neighbor relationship between points is defined, the mutual neighborhood of point is proposed, and then a new local density of points is defined and does not need to set the cutoff distance. The candidate cluster centers and relative density are developed. According to the relative density and the high-density nearest neighbor distance of candidate cluster centers, their credibility as the cluster centers is calculated, and then the cluster centers are selected. Second, the mutual neighbor degree and similarity between two points are constructed. The neighborhoods of points are defined according to the high-density nearest neighbor, shared nearest neighbors, mutual neighbor degree and similarity, respectively. The similarity set, similarity domain, positive set, negative set, prediction set, positive value and predicted value of point are provided based on the above-mentioned neighborhoods. Then the optimized allocation strategy of points is proposed. Finally, the allocation algorithms of the non-abnormal and abnormal points are designed, respectively, and then the NADPC algorithm is designed. To evaluate the effectiveness of NADPC, it has been applied to 22 synthetic datasets and 26 actual datasets including 4 image datasets, and has great performance in terms of several evaluation metrics when compared with the other latest clustering algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗广山完成签到,获得积分10
刚刚
悠悠完成签到 ,获得积分10
刚刚
HEAUBOOK应助wqmdd采纳,获得10
刚刚
彭于晏应助笨笨忘幽采纳,获得30
1秒前
cmy完成签到,获得积分10
3秒前
独自受罪完成签到 ,获得积分10
3秒前
6秒前
呵呵哒发布了新的文献求助30
8秒前
逃离地球完成签到 ,获得积分10
9秒前
13秒前
蒋时晏应助高大凌寒采纳,获得200
16秒前
小摩尔完成签到 ,获得积分10
20秒前
任风完成签到,获得积分10
22秒前
小乐儿~完成签到,获得积分10
23秒前
华仔应助斯文的傲珊采纳,获得10
24秒前
香冢弃了残红完成签到,获得积分10
24秒前
yao chen完成签到,获得积分10
24秒前
妙手回春板蓝根完成签到,获得积分10
26秒前
抹茶拿铁加奶砖完成签到 ,获得积分10
27秒前
不缺人YYDS完成签到,获得积分10
32秒前
223311完成签到,获得积分10
39秒前
传奇3应助mili采纳,获得10
40秒前
遗迹小白完成签到,获得积分10
42秒前
llllzzh完成签到 ,获得积分10
47秒前
清修完成签到,获得积分10
51秒前
接accept完成签到 ,获得积分10
51秒前
章铭-111完成签到 ,获得积分10
52秒前
小宇哥LB完成签到 ,获得积分10
52秒前
孤鸿影98完成签到 ,获得积分10
52秒前
汤绮菱完成签到,获得积分10
53秒前
yang完成签到,获得积分10
53秒前
罗静完成签到,获得积分10
56秒前
1461完成签到 ,获得积分10
56秒前
晁子枫完成签到 ,获得积分10
57秒前
哈哈哈的一笑完成签到,获得积分10
59秒前
yellow完成签到,获得积分10
1分钟前
鱼雷完成签到 ,获得积分10
1分钟前
1分钟前
阿rain完成签到,获得积分10
1分钟前
小凯完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226987
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734