Application of Machine Learning to the Prediction of Cancer-Associated Venous Thromboembolism

医学 一致性 队列 癌症 静脉血栓栓塞 人口 内科学 回顾性队列研究 机器学习 肿瘤科 人工智能 血栓形成 计算机科学 环境卫生
作者
Simon Mantha,Subrata Chatterjee,Rohan Kumar Singh,John Cadley,Chester Poon,Avijit Chatterjee,Daniel J. Kelly,Michelle Sterpi,Gerald A. Soff,Jeffrey I. Zwicker,José Manuel Soria,Magdalena Ruiz,Andrés J. Muñoz Martín,Maria E. Arcila
出处
期刊:Research Square - Research Square 被引量:6
标识
DOI:10.21203/rs.3.rs-2870367/v1
摘要

Abstract Venous thromboembolism (VTE) is a common and impactful complication of cancer. Several clinical prediction rules have been devised to estimate the risk of a thrombotic event in this patient population, however they are associated with limitations. We aimed to develop a predictive model of cancer-associated VTE using machine learning as a means to better integrate all available data, improve prediction accuracy and allow applicability regardless of timing for systemic therapy administration. A retrospective cohort was used to fit and validate the models, consisting of adult patients who had next generation sequencing performed on their solid tumor for the years 2014 to 2019. A deep learning survival model limited to demographic, cancer-specific, laboratory and pharmacological predictors was selected based on results from training data for 23,800 individuals and was evaluated on an internal validation set including 5,951 individuals, yielding a time-dependent concordance index of 0.72 (95% CI = 0.70–0.74) for the first 6 months of observation. Adapted models also performed well overall compared to the Khorana Score (KS) in two external cohorts of individuals starting systemic therapy; in an external validation set of 1,250 patients, the C-index was 0.71 (95% CI = 0.65–0.77) for the deep learning model vs 0.66 (95% CI = 0.59–0.72) for the KS and in a smaller external cohort of 358 patients the C-index was 0.59 (95% CI = 0.50–0.69) for the deep learning model vs 0.56 (95% CI = 0.48–0.64) for the KS. The proportions of patients accurately reclassified by the deep learning model were 25% and 26% respectively. In this large cohort of patients with a broad range of solid malignancies and at different phases of systemic therapy, the use of deep learning resulted in improved accuracy for VTE incidence predictions. Additional studies are needed to further assess the validity of this model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AbOO完成签到,获得积分10
刚刚
金鑫完成签到,获得积分10
刚刚
1秒前
1秒前
顾矜应助yuqiWang采纳,获得10
1秒前
英姑应助哆来米采纳,获得10
2秒前
2秒前
2秒前
3秒前
噢耶完成签到,获得积分20
3秒前
哎嘤斯坦完成签到,获得积分10
3秒前
清秀的靖巧完成签到,获得积分20
3秒前
4秒前
4秒前
江小霜发布了新的文献求助10
4秒前
5秒前
5秒前
LYF发布了新的文献求助10
6秒前
小叮当发布了新的文献求助10
6秒前
天才包发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
嘟嘟完成签到 ,获得积分10
7秒前
7秒前
nina完成签到 ,获得积分10
7秒前
jiao发布了新的文献求助10
7秒前
7秒前
8秒前
风趣的问梅完成签到,获得积分10
8秒前
陌小千完成签到 ,获得积分10
8秒前
dahuihui发布了新的文献求助10
9秒前
9秒前
追寻荔枝发布了新的文献求助10
10秒前
可爱的函函应助胡子采纳,获得40
10秒前
11秒前
AAA牢头发布了新的文献求助10
11秒前
11秒前
sunshine发布了新的文献求助10
11秒前
研友_VZG7GZ应助wx采纳,获得10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341667
求助须知:如何正确求助?哪些是违规求助? 4477790
关于积分的说明 13936857
捐赠科研通 4373983
什么是DOI,文献DOI怎么找? 2403246
邀请新用户注册赠送积分活动 1396065
关于科研通互助平台的介绍 1368096