Learning to Evaluate Performance of Multimodal Semantic Localization

计算机科学 任务(项目管理) 水准点(测量) 语义学(计算机科学) 人工智能 语义计算 自然语言处理 标杆管理 情报检索 语义网 营销 地理 程序设计语言 管理 经济 业务 大地测量学
作者
Zhiqiang Yuan,Wenkai Zhang,Chongyang Li,Zhaoying Pan,Yongqiang Mao,Jialiang Chen,Shuoke Li,Hongqi Wang,Xian Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:13
标识
DOI:10.1109/tgrs.2022.3207171
摘要

Semantic localization (SeLo) refers to the task of obtaining the most relevant locations in large-scale remote sensing (RS) images using semantic information such as text. As an emerging task based on cross-modal retrieval, SeLo achieves semantic-level retrieval with only caption-level annotation, which demonstrates its great potential in unifying downstream tasks. Although SeLo has been carried out successively, but there is currently no work has systematically explores and analyzes this urgent direction. In this paper, we thoroughly study this field and provide a complete benchmark in terms of metrics and testdata to advance the SeLo task. Firstly, based on the characteristics of this task, we propose multiple discriminative evaluation metrics to quantify the performance of the SeLo task. The devised significant area proportion, attention shift distance, and discrete attention distance are utilized to evaluate the generated SeLo map from pixel-level and region-level. Next, to provide standard evaluation data for the SeLo task, we contribute a diverse, multi-semantic, multi-objective Semantic Localization Testset (AIR-SLT). AIR-SLT consists of 22 large-scale RS images and 59 test cases with different semantics, which aims to provide a comprehensive evaluations for retrieval models. Finally, we analyze the SeLo performance of RS cross-modal retrieval models in detail, explore the impact of different variables on this task, and provide a complete benchmark for the SeLo task. We have also established a new paradigm for RS referring expression comprehension, and demonstrated the great advantage of SeLo in semantics through combining it with tasks such as detection and road extraction. The proposed evaluation metrics, semantic localization testsets, and corresponding scripts have been open to access at github.com/xiaoyuan1996/SemanticLocalizationMetrics .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助SAL采纳,获得10
1秒前
风清扬发布了新的文献求助10
2秒前
NexusExplorer应助mingshi采纳,获得10
2秒前
orixero应助yelaikuhun74采纳,获得10
3秒前
谷粱靖发布了新的文献求助10
4秒前
yuxin完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助100
6秒前
cera完成签到,获得积分10
6秒前
Painkiller_完成签到,获得积分10
6秒前
6秒前
7秒前
星辰大海应助无限数据线采纳,获得10
10秒前
粑粑完成签到,获得积分20
10秒前
lll发布了新的文献求助20
11秒前
火星上的沛春完成签到,获得积分10
12秒前
喜悦一德发布了新的文献求助10
14秒前
共享精神应助Su采纳,获得10
14秒前
15秒前
谷粱靖完成签到,获得积分10
15秒前
羞涩的问兰完成签到,获得积分10
16秒前
zz完成签到,获得积分10
16秒前
19秒前
19秒前
小蘑菇应助zz采纳,获得10
19秒前
20秒前
hyominhsu发布了新的文献求助10
20秒前
22秒前
meixinhu完成签到,获得积分10
22秒前
22秒前
22秒前
22秒前
浮游应助番茄炒鸡蛋采纳,获得10
22秒前
略略略发布了新的文献求助10
23秒前
土土完成签到 ,获得积分20
24秒前
深情的青易完成签到,获得积分10
24秒前
JN发布了新的文献求助30
25秒前
顺利毕业发布了新的文献求助10
25秒前
www发布了新的文献求助10
25秒前
丘比特应助小冉采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4676696
求助须知:如何正确求助?哪些是违规求助? 4054367
关于积分的说明 12537464
捐赠科研通 3748537
什么是DOI,文献DOI怎么找? 2070475
邀请新用户注册赠送积分活动 1099481
科研通“疑难数据库(出版商)”最低求助积分说明 979166