已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrating Neural-Symbolic Reasoning With Variational Causal Inference Network for Explanatory Visual Question Answering

视觉推理 计算机科学 因果推理 推论 人工智能 答疑 因果推理 诱因推理 机器学习 定性推理 因果模型 人工神经网络 构造(python库) 认知 数学 心理学 神经科学 统计 计量经济学 程序设计语言
作者
Dizhan Xue,Shengsheng Qian,Changsheng Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (12): 7893-7908 被引量:10
标识
DOI:10.1109/tpami.2024.3398012
摘要

Recently, a novel multimodal reasoning task named Explanatory Visual Question Answering (EVQA) has been introduced, which combines answering visual questions with multimodal explanation generation to expound upon the underlying reasoning processes. In contrast to conventional Visual Question Answering (VQA) that merely concentrates on providing answers, EVQA aims to improve the explainability and verifiability of reasoning by providing user-friendly explanations. Despite the improved explainability of inferred results, the existing EVQA models still adopt black-box neural networks to infer results, lacking the explainability of the reasoning process. Moreover, existing EVQA models commonly predict answers and explanations in isolation, overlooking the inherent causal correlation between them. To handle these challenges, we propose a Program-guided Variational Causal Inference Network (Pro-VCIN) that integrates neural-symbolic reasoning with variational causal inference and constructs causal correlations between the predicted answers and explanations. First, we utilize pretrained models to extract visual features and convert questions into the corresponding programs. Second, we propose a multimodal program Transformer to translate programs and the related visual features into coherent and rational explanations of the reasoning processes. Finally, we propose a variational causal inference to construct the target structural causal model and predict answers based on the causal correlation to explanations. Comprehensive experiments conducted on EVQA benchmark datasets reveal the superiority of Pro-VCIN in terms of both performance and explainability over state-of-the-art EVQA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关我屁事完成签到 ,获得积分10
刚刚
叮当完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
liu完成签到,获得积分10
3秒前
3秒前
小悦子完成签到,获得积分10
4秒前
kky完成签到,获得积分10
4秒前
搜集达人应助差不多先生采纳,获得10
5秒前
竹斟酒完成签到,获得积分10
6秒前
561发布了新的文献求助10
6秒前
好结局发布了新的文献求助10
6秒前
卡卡罗特发布了新的文献求助10
6秒前
明亮的涵山完成签到,获得积分20
6秒前
番茄酱发布了新的文献求助10
7秒前
MyAI发布了新的文献求助10
9秒前
居蓝完成签到 ,获得积分10
9秒前
10秒前
10秒前
wanci应助熊啊采纳,获得10
13秒前
13秒前
脑洞疼应助好结局采纳,获得10
14秒前
王晓卉完成签到 ,获得积分10
14秒前
爆米花应助番茄酱采纳,获得10
14秒前
14秒前
zhangsenbing发布了新的文献求助20
15秒前
嘿嘿发布了新的文献求助10
16秒前
科研小王子完成签到,获得积分20
16秒前
17秒前
周肆完成签到 ,获得积分10
21秒前
21秒前
22秒前
ZJX应助变化是永恒的采纳,获得10
22秒前
23秒前
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
大模型应助科研通管家采纳,获得10
25秒前
我是老大应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396