材料科学
电阻抗
生物医学工程
电容
光电子学
频谱分析仪
电介质
电气工程
电子工程
声学
工程类
物理
电极
量子力学
作者
Christopher A. Delianides,Sina Pourang,Selvin Hernandez,Dante Disharoon,Sanjay Ahuja,Matthew D. Neal,Anirban Sen Gupta,Pedram Mohseni,Michael A. Suster
标识
DOI:10.1109/tbcas.2023.3291875
摘要
This article presents a standalone, multichannel, miniaturized impedance analyzer (MIA) system for dielectric blood coagulometry measurements with a microfluidic sensor termed ClotChip. The system incorporates a front-end interface board for 4-channel impedance measurements at an excitation frequency of 1 MHz, an integrated resistive heater formed by a pair of printed-circuit board (PCB) traces to keep the blood sample near a physiologic temperature of 37 °C, a software-defined instrument module for signal generation and data acquisition, and a Raspberry Pi-based embedded computer with 7-inch touchscreen display for signal processing and user interface. When measuring fixed test impedances across all four channels, the MIA system exhibits an excellent agreement with a benchtop impedance analyzer, with rms errors of ≤0.30% over a capacitance range of 47-330 pF and ≤0.35% over a conductance range of 2.13-10 mS. Using in vitro-modified human whole blood samples, the two ClotChip output parameters, namely, the time to reach a permittivity peak (Tpeak) and maximum change in permittivity after the peak (Δϵr,max) are assessed by the MIA system and benchmarked against the corresponding parameters of a rotational thromboelastometry (ROTEM) assay. Tpeak exhibits a very strong positive correlation (r = 0.98, p < 10-6, n = 20) with the ROTEM clotting time (CT) parameter, while Δϵr,max exhibits a very strong positive correlation (r = 0.92, p < 10-6, n = 20) with the ROTEM maximum clot firmness (MCF) parameter. This work shows the potential of the MIA system as a standalone, multichannel, portable platform for comprehensive assessment of hemostasis at the point-of-care/point-of-injury (POC/POI).
科研通智能强力驱动
Strongly Powered by AbleSci AI