清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adaptive Safe Reinforcement Learning With Full-State Constraints and Constrained Adaptation for Autonomous Vehicles

强化学习 计算机科学 钢筋 国家(计算机科学) 适应(眼睛) 错误驱动学习 人工智能 心理学 神经科学 社会心理学 算法
作者
Yuxiang Zhang,Xiaoling Liang,Dongyu Li,Shuzhi Sam Ge,Bingzhao Gao,Hong Chen,Tong Heng Lee
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (3): 1907-1920 被引量:23
标识
DOI:10.1109/tcyb.2023.3283771
摘要

High-performance learning-based control for the typical safety-critical autonomous vehicles invariably requires that the full-state variables are constrained within the safety region even during the learning process. To solve this technically critical and challenging problem, this work proposes an adaptive safe reinforcement learning (RL) algorithm that invokes innovative safety-related RL methods with the consideration of constraining the full-state variables within the safety region with adaptation. These are developed toward assuring the attainment of the specified requirements on the full-state variables with two notable aspects. First, thus, an appropriately optimized backstepping technique and the asymmetric barrier Lyapunov function (BLF) methodology are used to establish the safe learning framework to ensure system full-state constraints requirements. More specifically, each subsystem's control and partial derivative of the value function are decomposed with asymmetric BLF-related items and an independent learning part. Then, the independent learning part is updated to solve the Hamilton–Jacobi–Bellman equation through an adaptive learning implementation to attain the desired performance in system control. Second, with further Lyapunov-based analysis, it is demonstrated that safety performance is effectively doubly assured via a methodology of a constrained adaptation algorithm during optimization (which incorporates the projection operator and can deal with the conflict between safety and optimization). Therefore, this algorithm optimizes system control and ensures that the full set of state variables involved is always constrained within the safety region during the whole learning process. Comparison simulations and ablation studies are carried out on motion control problems for autonomous vehicles, which have verified superior performance with smaller variance and better convergence performance under uncertain circumstances. The effectiveness of the safe performance of overall system control with the proposed method accordingly has been verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助边疆采纳,获得10
刚刚
12秒前
晨晨发布了新的文献求助10
17秒前
老石完成签到 ,获得积分10
23秒前
紫熊完成签到,获得积分10
26秒前
晨晨完成签到,获得积分10
26秒前
思源应助晨晨采纳,获得10
32秒前
李剑鸿发布了新的文献求助50
35秒前
刘峥峥完成签到,获得积分10
1分钟前
李剑鸿发布了新的文献求助100
1分钟前
1分钟前
边疆发布了新的文献求助10
1分钟前
WangVera完成签到,获得积分10
2分钟前
Vivian完成签到,获得积分10
2分钟前
小蘑菇应助边疆采纳,获得10
2分钟前
2分钟前
Axel发布了新的文献求助10
3分钟前
慕青应助微微采纳,获得50
3分钟前
李剑鸿发布了新的文献求助50
3分钟前
Ding-Ding完成签到,获得积分10
3分钟前
maggiexjl完成签到,获得积分10
3分钟前
3分钟前
小张吃不胖完成签到 ,获得积分10
3分钟前
李剑鸿发布了新的文献求助50
4分钟前
4分钟前
鑫酱发布了新的文献求助10
4分钟前
4分钟前
Re完成签到 ,获得积分10
4分钟前
研友_kngjrL发布了新的文献求助30
5分钟前
沈惠映完成签到 ,获得积分10
5分钟前
5分钟前
nannan完成签到 ,获得积分10
5分钟前
小二郎应助研友_kngjrL采纳,获得30
5分钟前
方沅完成签到,获得积分10
5分钟前
李剑鸿发布了新的文献求助50
5分钟前
晴莹完成签到 ,获得积分10
6分钟前
6分钟前
方白秋完成签到,获得积分10
6分钟前
桐桐应助zpc猪猪采纳,获得10
6分钟前
7分钟前
高分求助中
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 9th 400
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Critique du De mundo de Thomas White 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4393388
求助须知:如何正确求助?哪些是违规求助? 3883302
关于积分的说明 12090707
捐赠科研通 3527317
什么是DOI,文献DOI怎么找? 1935746
邀请新用户注册赠送积分活动 976730
科研通“疑难数据库(出版商)”最低求助积分说明 874395