4s-SleepGCN: Four-Stream Graph Convolutional Networks for Sleep Stage Classification

计算机科学 判别式 模式识别(心理学) 图形 睡眠阶段 人工智能 脑电图 卷积神经网络 特征提取 语音识别 多导睡眠图 理论计算机科学 心理学 精神科
作者
Menglei Li,Hongbo Chen,Yong Liu,Qiangfu Zhao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 70621-70634 被引量:3
标识
DOI:10.1109/access.2023.3294410
摘要

Sleep staging serves as a critical basis for assessing sleep quality and diagnosing sleep disorders in clinical practice. Most existing methods rely solely on a single channel for sleep staging, thereby neglecting the complementary nature of multimodal electrophysiological signal characteristics. In contrast, the current multi-stream sleep staging network primarily utilizes electrooculogram (EOG) and electroencephalogram (EEG) signals as inputs and efficiently fuses the extracted multimodal features. However, the importance of motion information in electrophysiological signals is rarely investigated, which could improve the classification performance. Moreover, recent sleep staging models have been plagued by issues of overparameterization and suboptimal classification accuracy. Moreover, EOG and EEG are non-Euclidean graph-structured data that can be effectively handled by graph convolutional networks. To address the aforementioned issues, we propose an efficient graph-based multi-stream model named 4s-SleepGCN, which combines biological signal features to classify sleep stages. In each single-stream model, the positional relationship of the modal sequences is incorporated into the proposed model to enhance the feature representation for sleep staging. On this basis, graph convolutions are utilized to capture spatial features, while multi-scale temporal convolutions are employed to model temporal dynamics and extract more discriminative contextual temporal features. The EEG signal, EOG signal, and corresponding motion information are separately fed into the single-stream model comprising our 4s-SleepGCN. Experimental results show that the proposed 4s-SleepGCN achieves the highest accuracy compared to state-of-the-art methods in both the Sleep-EDF-39 dataset (92.3%) and Sleep-EDF-153 dataset (85.5%). Additionally, we conduct numerous experiments on two representative datasets that demonstrate the validity of the motion modalities in sleep stage classification. Also, the proposed single-stream network shows higher accuracy (89.2% and 89.8%) in classification while requiring 33% fewer parameters. Our proposed 4s-SleepGCN model serves as a powerful tool to assist sleep experts in assessing sleep quality and diagnosing sleep-related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助羲和之梦采纳,获得10
1秒前
安静的冰蓝完成签到 ,获得积分10
2秒前
摩根完成签到,获得积分10
4秒前
科研通AI5应助零容忍采纳,获得10
5秒前
QQQ完成签到,获得积分20
5秒前
科研通AI5应助六出采纳,获得10
5秒前
7秒前
阳光c完成签到 ,获得积分10
8秒前
cdercder应助动人的凤凰采纳,获得10
8秒前
欧阳清水关注了科研通微信公众号
10秒前
田様应助guantlv采纳,获得10
11秒前
科研通AI5应助外向语蝶采纳,获得10
11秒前
大个应助闪闪翎采纳,获得10
11秒前
舒克完成签到,获得积分10
11秒前
12秒前
xxy完成签到,获得积分20
14秒前
14秒前
15秒前
16秒前
六出完成签到,获得积分10
17秒前
April完成签到 ,获得积分10
19秒前
山外山发布了新的文献求助30
20秒前
半夏完成签到,获得积分10
21秒前
葉鳳怡完成签到 ,获得积分10
21秒前
山川无恙发布了新的文献求助10
22秒前
冬瓜完成签到 ,获得积分10
24秒前
applelpypies完成签到 ,获得积分10
24秒前
酷炫翠桃完成签到,获得积分10
25秒前
26秒前
蓝调爱科研应助AnitaAdal采纳,获得10
26秒前
NN完成签到 ,获得积分10
27秒前
27秒前
27秒前
28秒前
沉静小萱发布了新的文献求助10
29秒前
ZZ完成签到,获得积分10
29秒前
30秒前
archer01发布了新的文献求助10
31秒前
重要尔曼发布了新的文献求助10
31秒前
江新儿发布了新的文献求助10
32秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816929
求助须知:如何正确求助?哪些是违规求助? 3360303
关于积分的说明 10407548
捐赠科研通 3078290
什么是DOI,文献DOI怎么找? 1690694
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958