医学
无线电技术
荟萃分析
置信区间
恶性肿瘤
优势比
子群分析
肺癌
放射科
诊断优势比
内科学
肿瘤科
作者
Lili Shi,Meihong Sheng,Zhichao Wei,Lei Liu,Jinli Zhao
标识
DOI:10.1016/j.acra.2023.05.026
摘要
More pulmonary nodules (PNs) have been detected with the wide application of computed tomography (CT) in lung cancer screening. Radiomics is a noninvasive approach to predict the malignancy of PNs. We aimed to systematically evaluate the methodological quality of the eligible studies regarding CT-based radiomics models in predicting the malignancy of PNs and evaluate the model performance of the available studies.PubMed, Embase, and Web of Science were searched to retrieve relevant studies. The methodological quality of the included studies was assessed using the Radiomics Quality Score (RQS) and Prediction model Risk of Bias Assessment Tool. A meta-analysis was conducted to evaluate the performance of CT-based radiomics model. Meta-regression and subgroup analyses were employed to investigate the source of heterogeneity.In total, 49 studies were eligible for qualitative analysis and 27 studies were included in quantitative synthesis. The median RQS of 49 studies was 13 (range -2 to 20). The overall risk of bias was found to be high, and the overall applicability was of low concern in all included studies. The pooled sensitivity, specificity, and diagnostic odds ratio were 0.86 95% confidence interval (CI): 0.79-0.91, 0.84 95% CI: 0.78-0.88, and 31.55 95% CI: 21.31-46.70, respectively. The overall area under the curve was 0.91 95% CI: 0.89-0.94. Meta-regression showed the type of PNs on heterogeneity. CT-based radiomics models performed better in studies including only solid PNs.CT-based radiomics models exhibited excellent diagnostic performance in predicting the malignancy of PNs. Prospective, large sample size, and well-devised studies are desired to verify the prediction capabilities of CT-based radiomics model.
科研通智能强力驱动
Strongly Powered by AbleSci AI