Flow-Based Robust Watermarking with Invertible Noise Layer for Black-Box Distortions

稳健性(进化) 计算机科学 数字水印 编码器 嵌入 人工智能 算法 计算机视觉 图像(数学) 生物化学 化学 基因 操作系统
作者
Han Fang,Yupeng Qiu,Kejiang Chen,Jiyi Zhang,Weiming Zhang,Ee‐Chien Chang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (4): 5054-5061 被引量:12
标识
DOI:10.1609/aaai.v37i4.25633
摘要

Deep learning-based digital watermarking frameworks have been widely studied recently. Most existing methods adopt an ``encoder-noise layer-decoder''-based architecture where the embedding and extraction processes are accomplished separately by the encoder and the decoder. However, one potential drawback of such a framework is that the encoder and the decoder may not be well coupled, resulting in the fact that the encoder may embed some redundant features into the host image thus influencing the invisibility and robustness of the whole algorithm. To address this limitation, this paper proposes a flow-based robust watermarking framework. The basic component of such framework is an invertible up-down-sampling neural block that can realize the embedding and extraction simultaneously. As a consequence, the encoded feature could keep high consistency with the feature that the decoder needed, which effectively avoids the embedding of redundant features. In addition, to ensure the robustness of black-box distortion, an invertible noise layer (INL) is designed to simulate the distortion and is served as a noise layer in the training stage. Benefiting from its reversibility, INL is also applied as a preprocessing before extraction to eliminate the distortion, which further improves the robustness of the algorithm. Extensive experiments demonstrate the superiority of the proposed framework in terms of visual quality and robustness. Compared with the state-of-the-art architecture, the visual quality (measured by PSNR) of the proposed framework improves by 2dB and the extraction accuracy after JPEG compression (QF=50) improves by more than 4%. Besides, the robustness against black-box distortions can be greatly achieved with more than 95% extraction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇与鱼发布了新的文献求助10
1秒前
墨墨发布了新的文献求助10
1秒前
an12138完成签到,获得积分10
1秒前
疯狂的虔完成签到,获得积分10
2秒前
酷波er应助她是姑娘采纳,获得10
2秒前
jingjing-8995发布了新的文献求助10
2秒前
高高发布了新的文献求助10
2秒前
Planck发布了新的文献求助10
3秒前
科研通AI5应助哒哒哒采纳,获得10
3秒前
3秒前
momo发布了新的文献求助10
3秒前
3秒前
慕青应助马六采纳,获得10
4秒前
周周周周周完成签到,获得积分10
4秒前
NexusExplorer应助称心誉采纳,获得10
5秒前
doctor fighting完成签到,获得积分10
5秒前
5秒前
7秒前
7秒前
保持好心情完成签到,获得积分10
7秒前
Hello应助ff采纳,获得10
7秒前
7秒前
7秒前
今后应助淳之风采纳,获得10
7秒前
8秒前
席半完成签到,获得积分10
8秒前
橙汁得配曼妥思完成签到 ,获得积分10
8秒前
8秒前
8秒前
宇与鱼完成签到,获得积分10
8秒前
田様应助HY采纳,获得10
9秒前
10秒前
10秒前
幸福的勒发布了新的文献求助10
10秒前
11秒前
星辰大海应助饱满冥茗采纳,获得10
11秒前
高高完成签到,获得积分10
11秒前
呆萌的鼠标完成签到 ,获得积分0
11秒前
11秒前
yusuf发布了新的文献求助10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838141
求助须知:如何正确求助?哪些是违规求助? 3380447
关于积分的说明 10514320
捐赠科研通 3100011
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821593
科研通“疑难数据库(出版商)”最低求助积分说明 772797