生物
家蚕
翼
遗传学
基础(线性代数)
计算生物学
生物技术
基因
细胞生物学
工程类
结构工程
几何学
数学
作者
Hao Chen,Qingsong Liu,Qingyou Xia,Ping Zhao
标识
DOI:10.1111/1744-7917.70131
摘要
Wings are key organs for insect diversity and adaptation. Wing discs are the starting point for wing development in insects, and their developmental mechanisms are central to wing formation. In silkworms, which serve as a general model for studying insect wing development, wing disc development is influenced by many factors. The 20-hydroxyecdysone and juvenile hormone complexes antagonistically regulate genes that affect wing disc development. The wing disc is also affected by different signaling pathway networks. Hox and Hedgehog are related to body appendage formation; Wnt and Hippo are related to cell proliferation, differentiation and morphogenesis; Janus kinase/signal transducer and activator of transcription and apoptosis are related to immune and apoptotic processes, and Notch pathways and microRNAs interact in wing disc regulation. As a result of natural evolution and genetic editing, silkworms exhibit wing phenotypes, including wingless, vestigial, incomplete wing, and miniature wing, significantly expanding research materials for studying wing development. This review integrates the mechanisms of silkworm wing disc growth and development and the signal regulation network. It proposes a "phenotype-driven pathway network reconstruction" research strategy, which can deepen the understanding of the molecular mechanism of wing development in insect metamorphosis. It supplements the wing development research of species such as fruit flies and butterflies. It proposes a new view that the domestication of wild silkworms reveals the "morphology-function-environment", providing theoretical support for the research of insect classification, evolution, and species diversity, and providing new strategies for preventing and controlling of agricultural and forestry pests.
科研通智能强力驱动
Strongly Powered by AbleSci AI