亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning-Based Prediction of Quality of Life Improvement After Surgery for Spinal Metastases

医学 逻辑回归 接收机工作特性 特征选择 机器学习 生活质量(医疗保健) 特征(语言学) 人工智能 朴素贝叶斯分类器 缺少数据 贝叶斯定理 脊柱外科 外科 物理疗法 内科学 支持向量机 贝叶斯概率 计算机科学 哲学 护理部 语言学
作者
Kyota Kitagawa,Satoshi Maki,Yuki Shiratani,Akinobu Suzuki,Koji Tamai,Takaki Shimizu,Kenichiro Kakutani,Yutaro Kanda,Hiroyuki Tominaga,Ichiro Kawamura,Masayuki Ishihara,Masaaki Paku,Yohei Takahashi,Toru Funayama,Kousei Miura,Eiki Shirasawa,Hirokazu Inoue,Atsushi Kimura,Takuya Iimura,Hiroshi Moridaira
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:50 (20): 1410-1419
标识
DOI:10.1097/brs.0000000000005367
摘要

Study Design. A prospective multicenter cohort study. Objective. To develop and validate machine learning models for predicting health-related quality of life (HRQoL) improvements in patients after one month and six months of surgery for spinal metastases. Summary of Background Data. The prediction of postoperative HRQoL of spinal metastases surgery remains understudied compared with studies of survival outcomes. Methods. We analyzed data from 413 patients who underwent surgery for spinal metastases at 40 participating institutions in Japan. The primary outcome was HRQoL improvement, defined as an increase in the EuroQol 5-Dimension 5-Level (EQ-5D) utility value of ≥0.32 from baseline. We developed two models for 1-month (n=360) and 6-month (n=189) outcomes using various machine learning algorithms. Missing values were imputed, and feature selection was performed using recursive feature elimination with cross-validation. We split the data into training (80%) and test (20%) sets for each model. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, precision, and F1-score. SHapley Additive exPlanations (SHAP) analysis was used to interpret feature importance. Results. The 6-month model outperformed the 1-month model across all metrics. For 1-month predictions, Logistic Regression achieved an AUC of 0.8136 and an accuracy of 0.7639 on the test set. For 6-month predictions, Naive Bayes demonstrated an AUC of 0.8928 and an accuracy of 0.8684. The 1-month model used 12 features, while the 6-month model required seven. SHAP analysis revealed that EQ-5D Mobility was the most influential feature in both models. Conclusions. Our models demonstrate high predictive accuracy for HRQoL improvements following spinal metastases surgery, with superior performance of the 6-month model. These models could enhance clinical decision-making and patient counseling by providing personalized predictions of postoperative QoL. Future research should focus on external validation and integration of these models into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
南宫愚志完成签到,获得积分10
7秒前
10秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
fukase发布了新的文献求助10
1分钟前
1分钟前
jfc完成签到 ,获得积分10
1分钟前
liuliu发布了新的文献求助10
1分钟前
怡然自中完成签到 ,获得积分10
1分钟前
延迟整流钾电流完成签到,获得积分10
2分钟前
2分钟前
Hu完成签到,获得积分20
2分钟前
liuliu发布了新的文献求助10
2分钟前
lovelife完成签到,获得积分10
2分钟前
liuliu完成签到,获得积分10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
fukase完成签到,获得积分10
3分钟前
renhuizhi完成签到,获得积分10
3分钟前
xxx发布了新的文献求助10
3分钟前
zpli完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
小雨发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
默默善愁发布了新的文献求助10
4分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617127
求助须知:如何正确求助?哪些是违规求助? 4701470
关于积分的说明 14913716
捐赠科研通 4749642
什么是DOI,文献DOI怎么找? 2549305
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091