镧                        
                
                                
                        
                            锂(药物)                        
                
                                
                        
                            材料科学                        
                
                                
                        
                            碘化物                        
                
                                
                        
                            金属锂                        
                
                                
                        
                            金属                        
                
                                
                        
                            阳极                        
                
                                
                        
                            离子                        
                
                                
                        
                            碘化锂                        
                
                                
                        
                            无机化学                        
                
                                
                        
                            结晶学                        
                
                                
                        
                            化学                        
                
                                
                        
                            物理化学                        
                
                                
                        
                            冶金                        
                
                                
                        
                            电解质                        
                
                                
                        
                            有机化学                        
                
                                
                        
                            电极                        
                
                                
                        
                            内分泌学                        
                
                                
                        
                            医学                        
                
                        
                    
            作者
            
                Yuanyuan Wang,Ziqing Yao,Man Pang,Zhongwei Jiang,Tao Pan,Chunman Zheng,Shuangke Liu,Yujie Li,Weiwei Sun            
         
                    
            出处
            
                                    期刊:ACS Nano
                                                         [American Chemical Society]
                                                        日期:2025-10-12
                                                                 
         
        
    
            
            标识
            
                                    DOI:10.1021/acsnano.5c13324
                                    
                                
                                 
         
        
                
            摘要
            
            Research on lithium metal anodes confronts critical challenges from uncontrolled dendrite growth and unstable SEIs, especially under high-energy conditions. Here, we report a surface engineering strategy utilizing lanthanum triiodide (LaI3) to regulate Li-ion transport dynamics and lithium crystal growth kinetics. LaI3 reacts with Li to form metallic La and LiI, creating a surface modification layer in inorganic components, which enhances interfacial stability and enables stable cycling of the Li anode. Further experiments and calculations show that the La/LiI-rich inorganic SEI layer regulates Li deposition orientation and improves interfacial transport kinetics. Specifically, La doping elevates the s-band center of the Li (200) facet, minimizing the s-band center energy difference and promoting the preferred orientation and planar growth of Li deposition. Meanwhile, LiI-rich SEI exhibits an ultralow Li+ migration barrier (0.035 eV) and superior Li+ adsorption, enabling rapid ion transport and uniform deposition. The synergistic effects are manifested in practical 5.93 Ah Li||NCM90 pouch cells, achieving a high energy density of 500.93 Wh kg–1 and maintaining 86.8% capacity retention after 50 cycles with an average Coulombic efficiency of 99.47%. This work presents a scalable approach for high-energy lithium metal batteries by combining simultaneous crystallographic orientation control and SEI engineering through interfacial chemistry manipulation.
         
            
 
                 
                
                    
                    科研通智能强力驱动
Strongly Powered by AbleSci AI