镧
锂(药物)
材料科学
碘化物
金属锂
金属
阳极
离子
碘化锂
无机化学
结晶学
化学
物理化学
冶金
电解质
有机化学
电极
内分泌学
医学
作者
Yuanyuan Wang,Ziqing Yao,Man Pang,Zhongwei Jiang,Tao Pan,Chunman Zheng,Shuangke Liu,Yujie Li,Weiwei Sun
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-10-13
卷期号:19 (41): 36771-36783
被引量:1
标识
DOI:10.1021/acsnano.5c13324
摘要
Research on lithium metal anodes confronts critical challenges from uncontrolled dendrite growth and unstable SEIs, especially under high-energy conditions. Here, we report a surface engineering strategy utilizing lanthanum triiodide (LaI3) to regulate Li-ion transport dynamics and lithium crystal growth kinetics. LaI3 reacts with Li to form metallic La and LiI, creating a surface modification layer in inorganic components, which enhances interfacial stability and enables stable cycling of the Li anode. Further experiments and calculations show that the La/LiI-rich inorganic SEI layer regulates Li deposition orientation and improves interfacial transport kinetics. Specifically, La doping elevates the s-band center of the Li (200) facet, minimizing the s-band center energy difference and promoting the preferred orientation and planar growth of Li deposition. Meanwhile, LiI-rich SEI exhibits an ultralow Li+ migration barrier (0.035 eV) and superior Li+ adsorption, enabling rapid ion transport and uniform deposition. The synergistic effects are manifested in practical 5.93 Ah Li||NCM90 pouch cells, achieving a high energy density of 500.93 Wh kg-1 and maintaining 86.8% capacity retention after 50 cycles with an average Coulombic efficiency of 99.47%. This work presents a scalable approach for high-energy lithium metal batteries by combining simultaneous crystallographic orientation control and SEI engineering through interfacial chemistry manipulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI