亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RNA language model and graph attention network for RNA and small molecule binding sites prediction

核糖核酸 计算机科学 图形 计算生物学 理论计算机科学 生物 遗传学 基因
作者
Saisai Sun,Jianyi Yang,Lin Gao,Pengyong Li,Yumeng Liu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:41 (9)
标识
DOI:10.1093/bioinformatics/btaf447
摘要

Abstract Motivation The structural complexities enable RNA to serve as a versatile molecular scaffold capable of binding small molecules with high specificity. Understanding these interactions is essential for elucidating RNA’s role in disease mechanisms and developing RNA-targeted therapeutics. However, predicting RNA-small molecule binding sites remains a significant challenge due to their conformational flexibility, structural diversity, and the limited availability of high-resolution structural data. Results In this study, we propose RLsite, a novel computational framework integrating pre-trained RNA language models with graph attention networks (GAT) to predict small-molecule binding sites on RNA. Our method effectively captures both sequential and structural features of RNA by leveraging large-scale RNA sequence data to learn intrinsic patterns and processing graph-based RNA structures to highlight key topological and spatial features. Compared to existing methods, RLsite demonstrates superior accuracy, generalizability, and biological relevance, achieving a Precision of 0.749, a Recall of 0.654, an MCC of 0.474, and an AUC of 0.828 on the public test set, which significantly outperforms the previous models, such as CapBind (an AUC of 0.770), MultiModRLBP (an AUC of 0.780), and RNABind (an AUC of 0.471). Notably, a case study of the PreQ1 riboswitch has achieved strong predictive performance (AUC = 0.97, Recall = 0.9), and its predicted binding sites have been confirmed experimentally. These results underscore our method as a potentially powerful tool for RNA-targeted drug discovery and advancing our understanding of RNA-ligand interactions. Availability and implementation The resource codes and data can be accessed at https://github.com/SaisaiSun/RLsite.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻哈哈发布了新的文献求助80
7秒前
小西完成签到 ,获得积分10
8秒前
科研通AI6应助动听衬衫采纳,获得30
19秒前
斯文败类应助堪冷之采纳,获得10
19秒前
39秒前
45秒前
usami42发布了新的文献求助10
50秒前
56秒前
传奇3应助科研通管家采纳,获得10
57秒前
57秒前
liumenghan完成签到,获得积分10
1分钟前
andrele发布了新的文献求助10
1分钟前
usami42完成签到,获得积分10
1分钟前
浮游应助超级mxl采纳,获得10
2分钟前
2分钟前
zyn应助嘻嘻哈哈采纳,获得60
2分钟前
zyn应助嘻嘻哈哈采纳,获得70
2分钟前
2分钟前
关琦完成签到,获得积分10
2分钟前
嘻嘻哈哈发布了新的文献求助70
2分钟前
2分钟前
2分钟前
gjj发布了新的文献求助10
2分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
GPTea应助科研通管家采纳,获得20
2分钟前
科研通AI6应助Double采纳,获得30
3分钟前
传奇3应助123456采纳,获得10
3分钟前
3分钟前
3分钟前
gjj完成签到,获得积分10
3分钟前
科研通AI6应助mayox采纳,获得10
3分钟前
123456发布了新的文献求助10
3分钟前
3分钟前
gjj发布了新的文献求助10
3分钟前
迷路的沛芹完成签到 ,获得积分10
3分钟前
Double发布了新的文献求助10
3分钟前
嘻嘻哈哈发布了新的文献求助60
3分钟前
4分钟前
GPTea应助科研通管家采纳,获得20
4分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5280016
求助须知:如何正确求助?哪些是违规求助? 4435020
关于积分的说明 13805905
捐赠科研通 4314826
什么是DOI,文献DOI怎么找? 2368282
邀请新用户注册赠送积分活动 1363713
关于科研通互助平台的介绍 1326938