已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distributional Difference-Based Dynamic Adaptation for Bearing Performance Degradation Assessment

降级(电信) 适应(眼睛) 计算机科学 方位(导航) 可靠性工程 工程类 人工智能 电信 物理 光学
作者
Xin Li,Fei Xiao,Zhende Ran,Huang Zhao,Ying Zhang,Xiaoxi Ding
标识
DOI:10.1109/phm-hangzhou58797.2023.10482592
摘要

Bearings are critical components in rotating machinery, where real-time monitoring of its health is essential to improve machine safety and productivity. However, the degradation trend of vibration signals collected during equipment operation is often unconspicuous, poor monotonicity, and large wave nature, making it difficult to accurately assess bearing performance. Considering the above issues, this study proposes a distribution difference-based dynamic adaptation method (DD-DAM), which uses the constructed distribution structure to evaluate the bearing state information. It includes three simple steps: first, the sample set was established based on a small number of healthy samples, from which a certain percentage of samples were randomly selected and their mean distribution was calculated as the baseline distribution. Then, Kullback-Leibler (KL) divergence was used to obtain the maximum distribution difference distance D max in the healthy sample set. Finally, the evaluation results are given by comparing the difference between D max and the monitoring status. The validity of the method was verified on the bearing experimental data set. In addition, compared with Gaussian mixture model (GMM) and principal component analysis (PCA) through quantitative assessment, DD-DAM showed significant advantages in evaluating the bearing health status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶糖喵发布了新的文献求助10
1秒前
所所应助追寻地坛采纳,获得10
2秒前
勤劳钧完成签到,获得积分10
3秒前
ling发布了新的文献求助10
5秒前
勤劳钧发布了新的文献求助10
6秒前
6秒前
奶茶完成签到 ,获得积分10
8秒前
怡然的一凤完成签到 ,获得积分10
10秒前
12秒前
你说的都对完成签到,获得积分10
13秒前
17秒前
ZH完成签到 ,获得积分10
21秒前
23秒前
24秒前
郭子仪发布了新的文献求助10
25秒前
25秒前
我是老大应助闪闪的发夹采纳,获得10
26秒前
29秒前
上官若男应助gundumzdg采纳,获得10
31秒前
32秒前
33秒前
bzlinhqu@126.com完成签到 ,获得积分10
34秒前
时代更迭完成签到 ,获得积分10
35秒前
星空完成签到 ,获得积分10
37秒前
欣喜凡之发布了新的文献求助30
39秒前
43秒前
wwmmyy完成签到 ,获得积分10
44秒前
忆点儿孤狼完成签到,获得积分10
47秒前
liu发布了新的文献求助10
48秒前
moonlin发布了新的文献求助10
49秒前
bkagyin应助包宇采纳,获得10
52秒前
ling完成签到,获得积分10
54秒前
Lee完成签到,获得积分10
56秒前
Amy完成签到 ,获得积分10
58秒前
58秒前
58秒前
香风智乃完成签到 ,获得积分10
59秒前
SciGPT应助文静采纳,获得10
59秒前
1分钟前
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845363
求助须知:如何正确求助?哪些是违规求助? 3387609
关于积分的说明 10550127
捐赠科研通 3108359
什么是DOI,文献DOI怎么找? 1712543
邀请新用户注册赠送积分活动 824461
科研通“疑难数据库(出版商)”最低求助积分说明 774808