已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Single-cell RNA sequencing of human tissue supports successful drug targets

核糖核酸 计算生物学 药品 细胞 生物 遗传学 基因 药理学
作者
Emma Dann,Erin Teeple,Rasa Elmentaite,Kerstin B. Meyer,Giorgio Gaglia,Frank O. Nestlé,Virginia Savova,Emanuele de Rinaldis,Sarah A. Teichmann
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:11
标识
DOI:10.1101/2024.04.04.24305313
摘要

Abstract Early characterization of drug targets associated with disease can greatly reduce clinical failures attributed to lack of safety or efficacy. As single-cell RNA sequencing (scRNA-seq) of human tissues becomes increasingly common for disease profiling, the insights obtained from this data could influence target selection strategies. Whilst the use of scRNA-seq to understand target biology is well established, the impact of single-cell data in increasing the probability of candidate therapeutic targets to successfully advance from research to clinic has not been fully characterized. Inspired by previous work on an association between genetic evidence and clinical success, we used retrospective analysis of known drug target genes to identify potential predictors of target clinical success from scRNA-seq data. Particularly, we investigated whether successful drug targets are associated with cell type specific expression in a disease-relevant tissue (cell type specificity) or cell type specific over-expression in disease patients compared to healthy controls (disease cell specificity). Analysing scRNA-seq data across 30 diseases and 13 tissues, we found that both classes of scRNA-seq support significantly increase the odds of clinical success for gene-disease pairs. We estimate that combined they could approximately triple the chances of a target reaching phase III. Importantly, scRNA-seq analysis identifies a larger and complementary target space to that of direct genetic evidence. In particular, scRNA-seq support is more likely to prioritize therapeutically tractable classes of genes such as membrane-bound proteins. Our study suggests that scRNA-seq-derived information on cell type- and disease-specific expression can be leveraged to identify tractable and disease-relevant targets, with increased probability of success in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shi hui应助dsahd2采纳,获得10
刚刚
1秒前
sss关闭了sss文献求助
1秒前
浮游应助Pupil采纳,获得10
1秒前
3秒前
5秒前
星辰大海应助甜美的忻采纳,获得10
5秒前
7秒前
王木木完成签到,获得积分10
9秒前
玛卡巴卡发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
13秒前
lovecharlie完成签到,获得积分10
14秒前
16秒前
16秒前
17秒前
20秒前
21秒前
21秒前
啊鹏鹏发布了新的文献求助10
21秒前
Bressanone发布了新的文献求助10
22秒前
玛卡巴卡发布了新的文献求助10
24秒前
任性翩跹应助科研通管家采纳,获得10
26秒前
赘婿应助科研通管家采纳,获得10
26秒前
隐形曼青应助科研通管家采纳,获得30
26秒前
CipherSage应助科研通管家采纳,获得10
26秒前
华仔应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
华仔应助科研通管家采纳,获得10
26秒前
rui应助科研通管家采纳,获得20
26秒前
26秒前
peterlee发布了新的文献求助10
28秒前
方国栋给方国栋的求助进行了留言
29秒前
30秒前
研友_Z6Qrbn完成签到,获得积分10
30秒前
30秒前
wuhzh发布了新的文献求助10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5265599
求助须知:如何正确求助?哪些是违规求助? 4425560
关于积分的说明 13776696
捐赠科研通 4301183
什么是DOI,文献DOI怎么找? 2360127
邀请新用户注册赠送积分活动 1356156
关于科研通互助平台的介绍 1317525