Markerless Human Motion Analysis for Telerehabilitation: A Case Study on Squat

远程康复 蹲下 物理医学与康复 运动(物理) 人体运动 计算机科学 人工智能 医学 政治学 远程医疗 医疗保健 法学
作者
Ying Hao Ang,Chow Khuen Chan,Shook Chin Yap,Chean Khim Toa,P. Tran,Sim Kuan Goh
出处
期刊:Advances in science, technology & innovation 卷期号:: 249-259
标识
DOI:10.1007/978-3-031-52303-8_18
摘要

Rehabilitation is a crucial treatment process, normally in clinical settings, for patients recovering from surgery and those suffering from various illnesses. However, frequent hospital visits can be inconvenient, especially for those patients with travel or transportation difficulties. With the rapidly advancing healthcare artificial intelligence(AI) and technology, a few pioneering works have investigated remote therapy to provide wider medical access while reducing unnecessary travel. In remote settings, various technologies (e.g., inertial measurement unit, marker-based motion capture system, and markerless computer vision-based human pose estimation), which have different strengths and weaknesses, can be used to track patients' postures and movement. In this paper, we investigate the cost-efficient computer vision-based human motion analysis using OPENPOSE, which uses machine learning for pose estimation and human body parts detection. A dataset is collected when the subject performed deep squats at fast, normal, and slow speeds in home settings. Videos were recorded and analyzed for the computation of joint angles and joint angular velocities during a squat. These experimental results were evaluated by comparing them with data collected from a marker-based motion capture system. According to the results, the proposed markerless-based system provided comparable accurate joint angles and angular velocities estimation. While this study focuses on squatting, the findings have implications for home-based telerehabilitation in a smart city.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪花不滑完成签到,获得积分10
刚刚
刘倩发布了新的文献求助10
刚刚
刚刚
zz完成签到 ,获得积分10
刚刚
1秒前
1秒前
2秒前
3秒前
3秒前
4秒前
Mengjie完成签到,获得积分10
4秒前
华仔应助机灵又蓝采纳,获得10
4秒前
4秒前
4秒前
格拉希尔完成签到 ,获得积分10
4秒前
直率的冰海完成签到,获得积分10
4秒前
英姑应助小刘采纳,获得10
5秒前
fanssw完成签到 ,获得积分10
5秒前
6秒前
小林完成签到 ,获得积分10
6秒前
6秒前
呱呱乐发布了新的文献求助10
7秒前
果果发布了新的文献求助10
7秒前
哭泣乌发布了新的文献求助10
7秒前
7秒前
ccm发布了新的文献求助10
7秒前
胡树发布了新的文献求助10
8秒前
害羞的花生完成签到,获得积分20
8秒前
情怀应助Jasmine采纳,获得10
8秒前
8秒前
8秒前
清脆从蓉完成签到,获得积分20
8秒前
xywang完成签到,获得积分10
8秒前
寄寄寄寄寄了完成签到,获得积分20
9秒前
关琦完成签到,获得积分10
9秒前
陈琳完成签到,获得积分10
9秒前
长情箴完成签到 ,获得积分10
10秒前
zhanzhanzhan完成签到,获得积分10
10秒前
Elytra完成签到,获得积分10
10秒前
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834256
求助须知:如何正确求助?哪些是违规求助? 3376847
关于积分的说明 10495379
捐赠科研通 3096271
什么是DOI,文献DOI怎么找? 1704904
邀请新用户注册赠送积分活动 820296
科研通“疑难数据库(出版商)”最低求助积分说明 771940