山崩
曲率
系列(地层学)
时间序列
光纤
计算机科学
深度学习
人工智能
模式识别(心理学)
遥感
数学
地质学
机器学习
电信
几何学
地震学
古生物学
作者
Brian Pamukti,Muhammad Fajar Faliasthiunus Pradipta,Shien‐Kuei Liaw,Fu-Liang Yang,Yamei Yang
出处
期刊:Journal of The Optical Society of America B-optical Physics
[The Optical Society]
日期:2024-04-08
卷期号:41 (5): 1207-1207
被引量:7
摘要
Curvature detection is an essential technique for monitoring landslides, which are frequent and destructive disasters. Existing methods for curvature detection using fiber-optic sensors have limitations such as complex fabrication or large data size. We propose a data processing method for high-accuracy curvature detection that employs deep learning. We experimented using different levels of curvature and compared our method with other methods. Our method achieves 99.82% accuracy for classification and root mean square error of 0.042m −1 for regression with a simpler structure and smaller data size. Our approach demonstrates its potential for landslide detection and integration with communication systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI