亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sports event data analysis and win rate prediction model using self-attention mechanism and Transformer

计算机科学 人工智能 支持向量机 突出 随机森林 数据挖掘 模式识别(心理学) 稳健性(进化) 机器学习 生物化学 基因 化学
作者
Hua Xu,Bing Lin,L Liu
出处
期刊:Journal of Computational Methods in Sciences and Engineering [IOS Press]
标识
DOI:10.1177/14727978251348637
摘要

Given the challenges in capturing temporal dependencies within sports event data and the imbalance between global and local feature representations, this study introduces a Transformer-based model designed to address these issues. By leveraging a multi-head self-attention mechanism, the model effectively captures dynamic features across different time granularities, thereby enhancing the analysis of temporal event data and improving the accuracy of win rate prediction. Specifically, a time-segment encoding strategy is first employed to partition the event sequence data, enabling independent processing of features within each temporal segment. Subsequently, a multi-level Transformer architecture is constructed to extract both short-term and long-term dependencies at different hierarchical levels, facilitating a more comprehensive understanding of game dynamics. To further refine feature representation, a dynamic self-attention adjustment mechanism is incorporated, allowing the model to adaptively focus on salient features based on the characteristics of the input data. Experimental results demonstrate that, in comparison with baseline models—including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and Extreme Gradient Boosting (XGBoost)—the proposed model achieves superior performance. Specifically, it improves prediction accuracy by 10.7%, 8.3%, 3.9%, 6.0%, 4.3%, and 2.4%, respectively, and enhances precision by 10.6%, 9.4%, 5.0%, 6.5%, 4.5%, and 3.6%, respectively. These findings underscore the model’s effectiveness in handling complex temporal sequences and multi-layered feature structures, thereby significantly improving the accuracy and robustness of win rate predictions in sports events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小俊完成签到,获得积分10
7秒前
don完成签到 ,获得积分10
13秒前
可达鸭应助131949采纳,获得10
28秒前
科研通AI5应助13654135090采纳,获得30
33秒前
131949完成签到,获得积分20
35秒前
腼腆钵钵鸡完成签到 ,获得积分10
48秒前
量子星尘发布了新的文献求助10
52秒前
鳎mu完成签到,获得积分10
53秒前
55秒前
58秒前
鳎mu发布了新的文献求助10
59秒前
we发布了新的文献求助10
1分钟前
Ddz完成签到,获得积分10
1分钟前
yznfly应助鳎mu采纳,获得30
1分钟前
1分钟前
小蜻蜓应助科研通管家采纳,获得10
1分钟前
1分钟前
烟花应助归陌采纳,获得10
1分钟前
13654135090发布了新的文献求助30
1分钟前
1分钟前
苏silence发布了新的文献求助10
1分钟前
风华正茂完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
苏silence发布了新的文献求助10
2分钟前
2分钟前
苏silence发布了新的文献求助10
2分钟前
13654135090完成签到,获得积分10
2分钟前
yiyi发布了新的文献求助10
2分钟前
IvanMcRae应助呜呜吴采纳,获得10
2分钟前
微光完成签到,获得积分10
2分钟前
2分钟前
CL发布了新的文献求助10
2分钟前
高挑的沛蓝完成签到,获得积分10
2分钟前
2分钟前
共享精神应助高挑的沛蓝采纳,获得10
3分钟前
苏silence发布了新的文献求助10
3分钟前
无花果应助布鲁爱思采纳,获得10
3分钟前
小蜻蜓应助科研通管家采纳,获得10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
善学以致用应助yiyi采纳,获得10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957025
求助须知:如何正确求助?哪些是违规求助? 3503031
关于积分的说明 11111158
捐赠科研通 3234068
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870728
科研通“疑难数据库(出版商)”最低求助积分说明 802250