Research on intelligent energy management strategies for connected range-extended electric vehicles based on multi-source information

计算机科学 航程(航空) 能量(信号处理) 能源管理 练习场 电动汽车 数据科学 工程类 物理 量子力学 航空航天工程 功率(物理)
作者
X. Y. Zhai,Hanwu Liu,Wencai Sun,Zihang Su
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1) 被引量:1
标识
DOI:10.1038/s41598-025-97955-8
摘要

Reliance solely on vehicle-specific information, while neglecting multi-source information such as traffic flow and traffic light status, results in difficulties in optimizing energy allocation based on complex road conditions. To achieve the application of multi-source traffic information and enhance the timeliness in multi-objective optimization (MOO) for connected automated range-extended electric vehicles (CAR-EEV), this paper proposes an intelligent energy management strategy (EMS) from a multi-objective perspective. Firstly, a joint simulation platform for traffic scenarios is established based on SUMO and MATLAB, and a data-driven model of CAR-EEV is constructed using collected data, serving as the data foundation and operational platform for subsequent research and development of EMSs. Then, leveraging an image-like representation of traffic flow information based on grid grayscale maps, multi-source traffic information is materialized into a two-dimensional matrix. The Euclidean distance between consecutive traffic scenario matrices is used as a basis for similarity to optimize speed and predict future vehicle speeds. Moreover, a multi-objective intelligent EMS based on deep reinforcement learning (DRL) is employed, utilizing the Deep Deterministic Policy Gradient (DDPG) algorithm to comprehensively consider vehicle dynamics, energy consumption economy, and the degradation of batteries. This establishes an end-to-end intelligent EMS framework for CAR-EEV and accelerates training convergence through prioritized experience replay. Finally, simulations and bench tests demonstrate that this intelligent EMS significantly improves vehicle dynamics and battery life, with notably enhancing real-time performance and effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
情怀应助vfi采纳,获得10
1秒前
你好CDY完成签到,获得积分10
2秒前
寻123发布了新的文献求助10
2秒前
111发布了新的文献求助30
4秒前
锅子发布了新的文献求助10
4秒前
galaxy发布了新的文献求助10
5秒前
5秒前
fat完成签到,获得积分10
6秒前
张乐完成签到,获得积分10
6秒前
文雨应助Deyong采纳,获得10
6秒前
7秒前
orixero应助Answer采纳,获得10
11秒前
寻123完成签到,获得积分10
13秒前
大胖小子完成签到,获得积分10
13秒前
ding应助墨尘采纳,获得10
14秒前
荒野风完成签到,获得积分20
15秒前
huoshu完成签到,获得积分10
15秒前
safett应助hxd_BIGpaperer采纳,获得10
18秒前
18秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
小小狗完成签到,获得积分10
21秒前
russing完成签到 ,获得积分10
21秒前
22秒前
科研黑猫完成签到,获得积分10
24秒前
荒野风发布了新的文献求助10
26秒前
28秒前
30秒前
慕青应助Answer采纳,获得10
30秒前
南夏完成签到,获得积分10
31秒前
蓝天应助仁爱的冷亦采纳,获得20
32秒前
32秒前
朱华彪完成签到,获得积分10
33秒前
34秒前
34秒前
34秒前
34秒前
眼睛大的冰岚完成签到,获得积分10
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231596
求助须知:如何正确求助?哪些是违规求助? 3764977
关于积分的说明 11830407
捐赠科研通 3423970
什么是DOI,文献DOI怎么找? 1878982
邀请新用户注册赠送积分活动 931915
科研通“疑难数据库(出版商)”最低求助积分说明 839431