已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Batteries temperature prediction and thermal management using machine learning: An overview

人工神经网络 计算机科学 电池(电) 机器学习 人工智能 能源管理 能量(信号处理) 功率(物理) 物理 统计 数学 量子力学
作者
Ahmad Al Miaari,Hafız Muhammad Ali
出处
期刊:Energy Reports [Elsevier BV]
卷期号:10: 2277-2305 被引量:20
标识
DOI:10.1016/j.egyr.2023.08.043
摘要

Batteries, particularly lithium-ion batteries, play an important role in powering our modern world, from portable devices to electric vehicles and renewable energy storage. However, during charging and discharging, they generate heat due to chemical reactions within them. This heat can lead to reduced performance, shortened lifespan, and even safety risks if not properly managed. To address this problem, Machine learning has been emerged as a changing tool in battery technology due to its ability to analyze large datasets that can be used in predicting battery temperatures and enhancing their thermal management. In this work, we address machine learning features along with a look at its various learning categories, frameworks, and applications. In a comprehensive study, various machine learning methods and neural networks used in battery temperature prediction and thermal management are analyzed and discussed along with its various training algorithms. Moreover, the paper reviews and summarizes various research publications examining battery temperature prediction and battery thermal management using the various machine learning algorithms. As a result, there is no superior machine learning algorithm for battery temperature prediction and thermal management, as the performance of the model may vary depending on the data set, training algorithm, and other parameters. However, among these machine learning algorithms researchers are preferring to use artificial neural networks due to its accuracy and model complexity. In particular, artificial neural network integrated with proper cooling technology can reduce the battery temperature by more than 25%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏耘琛完成签到,获得积分10
1秒前
2秒前
2秒前
沛蓝完成签到,获得积分10
2秒前
cheire发布了新的文献求助10
3秒前
4秒前
5秒前
Lin2019发布了新的文献求助10
5秒前
stacy完成签到 ,获得积分10
6秒前
文艺的曼柔完成签到 ,获得积分10
7秒前
hi发布了新的文献求助10
7秒前
科研通AI5应助清爽的非笑采纳,获得10
9秒前
gundumzdg发布了新的文献求助10
10秒前
11秒前
11秒前
cwj完成签到 ,获得积分10
11秒前
rsjames发布了新的文献求助10
12秒前
12秒前
13秒前
hi完成签到,获得积分20
14秒前
milk完成签到 ,获得积分10
16秒前
sansronds发布了新的文献求助10
17秒前
诗亭发布了新的文献求助10
17秒前
lxlcx应助zycdx3906采纳,获得20
17秒前
17秒前
fanlee完成签到,获得积分10
18秒前
18秒前
情怀应助hi采纳,获得10
20秒前
hgc发布了新的文献求助10
20秒前
小二郎应助lin采纳,获得10
21秒前
HHHHHH发布了新的文献求助10
23秒前
26秒前
27秒前
28秒前
nini发布了新的文献求助10
32秒前
lin发布了新的文献求助10
33秒前
深情安青应助Lin2019采纳,获得10
33秒前
34秒前
只鱼完成签到 ,获得积分10
35秒前
热心的十二完成签到 ,获得积分10
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845363
求助须知:如何正确求助?哪些是违规求助? 3387609
关于积分的说明 10550127
捐赠科研通 3108359
什么是DOI,文献DOI怎么找? 1712543
邀请新用户注册赠送积分活动 824461
科研通“疑难数据库(出版商)”最低求助积分说明 774808