Prediction of Thermogravimetric Data for Asphaltenes Extracted from Deasphalted Oil Using Machine Learning Techniques

热重分析 沥青质 化学 计算机科学 工艺工程 有机化学 工程类
作者
Kaushik Sivaramakrishnan,Joy H. Tannous,Vignesh Chandrasekaran
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:62 (43): 17787-17804 被引量:3
标识
DOI:10.1021/acs.iecr.3c01798
摘要

Thermogravimetric analysis (TGA) has been extensively used in the bitumen literature to investigate its thermal stability and various stages of thermal decomposition. The primary aim of these studies has been to calculate the kinetic parameters, such as activation energy and the pre-exponential factor of each thermal event. However, in our current paper, we explore the application of three machine learning (ML) techniques, namely, support vector regression (SVR), random forest (RF), and gradient booster regression (GBR), to predict the TGA data for the asphaltenes extracted from the feed and products of visbreaking of three types of materials: (i) deasphalted oil (DAO), (ii) DAO doped with 5.55 wt % indene, and (iii) DAO doped with 11.11 wt % indene. The addition of indene was shown to significantly affect the free-radical chemistry of DAO in a previous work, and the key contribution of our work in this paper was to minimize the requirement of the TGA instrument to obtain the mass loss curves by employing ML techniques on available experimental data. This will reduce the human errors involved in sample preparation and data collection as well as decrease the process time in obtaining the TGA data as compared to experimentation. We observed that the regression techniques based on decision trees, i.e., RF and GBR, showed the best performance and highest prediction accuracy of >0.99 for predicting the TGA data of the asphaltenes extracted from the feed and products obtained by reacting the feedstocks at visbreaking reaction times of 30, 45, and 60 min. A number of inputs were considered for the ML models, such as the temperature of the TGA chamber and sample, heat supplied to the sample, visbreaking time, and time spent inside the TGA chamber. The novelty of our work lies in the fact that no previous study has reproduced the TGA data for asphaltenes extracted from DAO and indene-added DAO and their visbroken products through ML approaches, and we believe that the results of this work will help in fastening the process times in the heavy oil industry by eliminating the need for offline measuring instruments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
笑点低的文轩完成签到,获得积分20
1秒前
hanry发布了新的文献求助10
1秒前
Esther发布了新的文献求助30
2秒前
2秒前
屈聪展完成签到,获得积分10
3秒前
晴朗完成签到,获得积分10
4秒前
今后应助HAL9000采纳,获得10
4秒前
bella发布了新的文献求助10
5秒前
jhxie完成签到,获得积分10
6秒前
笑对人生完成签到 ,获得积分10
6秒前
摆渡人发布了新的文献求助10
7秒前
Jau完成签到,获得积分0
7秒前
TGU的小马同学完成签到 ,获得积分10
7秒前
rebubu完成签到 ,获得积分10
7秒前
浮游应助malenia采纳,获得10
7秒前
西西完成签到,获得积分10
8秒前
何柯应助wss采纳,获得10
8秒前
拼搏的寒凝完成签到 ,获得积分10
9秒前
10秒前
Esther完成签到,获得积分10
10秒前
飘萍过客完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
cccc完成签到,获得积分20
13秒前
李健的小迷弟应助yuhanz采纳,获得10
14秒前
aiming完成签到 ,获得积分10
14秒前
传奇3应助1816013153采纳,获得30
15秒前
15秒前
CipherSage应助科研鬼才采纳,获得10
16秒前
YCH完成签到,获得积分10
17秒前
Brightan完成签到,获得积分10
20秒前
wildeager完成签到,获得积分10
21秒前
21秒前
青山发布了新的文献求助10
22秒前
Orange应助小丁同学采纳,获得10
25秒前
26秒前
摆渡人发布了新的文献求助10
26秒前
26秒前
归尘发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539472
求助须知:如何正确求助?哪些是违规求助? 4626203
关于积分的说明 14598378
捐赠科研通 4567137
什么是DOI,文献DOI怎么找? 2503807
邀请新用户注册赠送积分活动 1481627
关于科研通互助平台的介绍 1453226